Задачи со стрелками часов с решением

Задачи со стрелками часов с решением

Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Скорость движения минутной стрелки 12 делений/час (под одним делением здесь подразумевается расстояние между соседними цифрами на циферблате часов), а часовой – 1 деление/час. До четвертой встречи минутной и часовой стрелок минутная должна сначала 3 раза «обогнать» часовую, то есть пройти 3 круга по 12 делений. Пусть после этого до четвертой встречи часовая стрелка пройдет делений. Тогда общий путь минутной стрелки складывается из найденных 36 делений, ещё 8 изначально разделяющих их делений (поскольку часы показывают 8 часов) и последних L делений. Приравняем время движения часовой и минутной стрелок:

Часовая стрелка пройдет 4 деления, что соответствует 4 часам, то есть 240 минутам.

Приведем другое решение.

Ясно, что в первый раз стрелки встретятся между 8 и 9 часами, второй раз — между 9 и 10 часами, третий — между 10 и 11, четвертый — между 11 и 12 часами, то есть ровно в 12 часов. Таким образом, они встретятся ровно через 4 часа, что составляет 240 минут.

По просьбам читателей помещаем общее решение.

Скорость вращения часовой стрелки равна 0,5 градуса в минуту, а минутной — 6 градусов в минуту. Поэтому когда часы показывают время h часов m минут часовая стрелка повернута на 30h + 0,5m градусов, а минутная — на 6m градусов относительно 12-часового деления.

Пусть в первый раз стрелки встретятся через t1 минут. Тогда если минутная стрелка еще не опережала часовую в течение текущего часа, то 6m + 6t1 = 30h + 0,5m + 0,5t1, т. е. t1 = (60h − 11m)/11 (*). В противоположном случае получаем уравнение 6m + 6t1 = 30h + 0,5m + 0,5t1 + 360, откуда t1 = (60h − 11m + 720)/11 (**).

Пусть во второй раз стрелки встретятся через t2 минут после первого, тогда 0,5t2 = 6t2 − 360, откуда t2 = 720/11 (***). Это же верно для каждого следующего оборота.

Читайте также:  Как в автокаде вырезать часть чертежа

Поэтому для встречи с номером n из (*) и (**) с учетом (***) имеем соответственно: tn = (60h − 11m + 720(n − 1))/11 или tn = (60h − 11m + 720n)/11.

Задача про стрелки часов. Задание 11

1. Задание 11 (№ 99600)

Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Эта задача ничуть не сложнее, чем задача на движение по кругу. У нас по кругу движутся часовая и минутная стрелки. Минутная стрелка за час проходит полный круг, то есть 360°. Значит, ее скорость равна 360° в час. Часовая стрелка за час проходит угол 30° ( это угол между двумя соседними числами на циферблате). Значит, ее скорость 30° в час.

В 8 часов 00 минут расстояние между стрелками составляет 240°:

Пусть минутная стрелка в первый раз встретится с часовой через t часов. За это время минутная стрелка пройдет 360°t, а часовая 30°t, причем минутная пройдет на 240° больше, чем часовая. Получим уравнение:

То есть через 8/11 часа стрелки первый раз встретятся.

Теперь до следующей встречи минутная стрелка пройдет на 360° больше, чем часовая. Пусть это произойдет через х часов.

360°х-30°х=360°. Отсюда х=12/11. И так еще два раза.

Получаем, что минутная стрелка в четвертый раз поравняется с часовой через 8/11+12/11+12/11+12/11= 4 часа= 240 мин.

Ответ: 240 мин.

2. Задание 11 (№ 114773). Часы со стрелками показывают 1 час 35 минут. Через сколько минут минутная стрелка в десятый раз поравняется с часовой?

В этой задаче скорость движения стрелок будем выражать в градусах/минуту.

Скорость минутной стрелки равна 360˚/60=6˚ в минуту.

Скорость часовой стрелки равна 30˚/60=0,5˚ в минуту.

В 0 часов положение часовой и минутной стрелок совпадало. 1 час 35 минут — это 95 минут. За это время минутная стрелка прошла 95х6=570˚=360˚+210˚, а часовая прошла 95×0,5˚=47,5˚. И у нас такая картинка:

Читайте также:  Зачем в вытяжке обратный клапан

Первый раз стрелки встретятся через время , когда часовая стрелка повернется на , а минутная на 150˚+47,5˚ больше. Получаем уравнение для :

Отсюда

Следующий раз стрелки встретятся, когда минутная пройдет на круг больше часовой:

Минутная стрелка в десятый раз поравняется с часовой через минут

Единицы измерения отрезков времени – час, минута, секунда и ее доли созданы самим человеком. Люди издавна воспринимали течение времени, наблюдая постоянную смену дня и ночи и ряд других систематически повторяющихся явлений природы. Но измерять время они научились значительно позднее. Теперь из всех известных приборов, самыми распространенными являются часы, которыми мы постоянно пользуемся, и не только в быту, но и в науке и технике, без них невозможно представить жизнь.

Человеку часто приходится решать задачи, связанные с часами. Например, как поставить точное время, если твои часы остановились, как определить страны света пользуясь часами, и т. д. Мне стало интересно, какие задачи существуют, связанные с часами, и я решил систематизировать их. Итак, цель моей работы: исследовать и систематизировать задачи, в которых говорится о часах, выявить методы их решения. В связи с этим я поставил такие задачи:

1. изучить соответствующую литературу;

2. подобрать задачи, в условиях которых говорится о часах;

3. определить уровень их сложности и найти их решения;

4. предложить найденные задачи учителям математики для использования в своей работе.

Просмотрев различные пособия, я выяснил, что многие задачи, такие как задачи на движения, на параметры, на решение уравнений собранны в один сборник, а задач о часах не так уж и много, и отдельно ни кем не рассмотрены. Поэтому моя подборка по данной теме имеет признаки новизны. Решения любых задач актуальны, носят исследовательский характер, в том числе и задач о часах.

Читайте также:  Ошибка при записи windows 10 на флешку

Объектом исследования являются задачи, а предметом — задачи о часах

Задачи на разделения.

Первые задачи, которые встречаются в начальных классах – это задачи о разделении циферблата часов на 2 части, на 3 части прямой линией (одной, двумя), так чтобы суммы чисел в каждой части были равными и определить эту сумму. Разделить на 6 частей. [ 1. стр.23]

Решения (см рис.) Сумма все чисел на циферблате – 78. х>12– сумма, а у>1 – число частей, тогда х·у = 78. Воспользуемся тем, что 78 = 2 · 3 · 13.

Варианты: 1) х = 39, у = 2;

2. Разделить циферблат часов на части так, чтобы суммы чисел в каждой части, составили прогрессии.

Решения (см рис) Получаются прогрессии: 6, 15, 24, 33 и 15, 18, 21, 24.

Задачи на нахождения углов между стрелками

1. Какие углы составляют между собой стрелки часов, если они показывают 7 часов и 9 часов 30 минут?

Решение: а) Стрелки показывают 7 часов. Значит, между концами этих стрелок заключена дуга в полной окружности. В градусной мере это составляет 3600 · .

б) Стрелки показывают 9 часов 30 минут. Дуга между их концами содержит двенадцатых доли полной окружности или , что составляет 1050.

2. Ежедневно Он подходил к городским часам в 4 часа. Она же приходила туда, когда воображаемая биссектриса между часовой и минутной стрелками проходила через цифру 6. Когда приходила Она?

Решение. По условию углы 1 и 2 равны (рис. 1). Так как часовая стрелка показывает время между 4 и 5 часами, то минутная стрелка расположена между цифрами 7 и 8, то есть искомое время между 4 ч 35 мин и 4 ч 40 мин.. Уточняя, получим, что часовая стрелка находится между и 4ч.. В силу симметрии для показания t минутной стрелки получим следующее неравенство:

35 + 5 ·

Ссылка на основную публикацию
Зависимость давления от высоты столба жидкости
Калькулятор находит неизвестные величины по заданным, используя формулу давления столба жидкости. Калькулятор ниже предназначен для расчета неизвестной величины по заданным,...
Долго загружается интернет эксплорер
Несмотря на растущую популярность многих новых веб-браузеров, таких как Google Chrome и Firefox от Mozilla, Internet Explorer от Microsoft по-прежнему...
Долгий черный экран при загрузке windows 10
С переход на новую операционную систему черным экраном при загрузке Windows 10 сложно кого-либо удивить, что самое любопытное, столько разных...
Зависимость калорий от пульса
На любом кардио-тренажере есть таблица, которая показывает связь пульса и сжигания жира и особенно отмечает «зонау жиросжигания». В чем суть:...
Adblock detector