Умножение синуса на косинус формула

Умножение синуса на косинус формула

Изучение основных формул тригонометрии продолжаем формулами произведения синусов, косинусов и синуса на косинус. Эти формулы являются в определенном смысле обратными формулам суммы синусов и косинусов, то есть, позволяют от произведения синусов и косинусов углов и перейти к сумме или разности синусов и косинусов углов и .

В этой статье мы рассмотрим следующие формулы: произведение синусов, произведение косинусов и произведение синуса на косинус, покажем их вывод, а также приведем примеры их использования.

Навигация по странице.

Список формул

Запишем по порядку формулы произведения синусов, косинусов и синуса на косинус.

Эти формулы справедливы для любых углов и .

Озвучим формулировки данных формул произведения:

  • Произведение синусов углов и равно полуразности косинуса угла и косинуса угла .
  • Произведение косинусов углов и равно полусумме косинуса разности углов и и косинуса суммы этих углов.
  • Произведение синуса угла и косинуса угла равно полусумме синуса разности углов и и синуса суммы этих углов.

Вывод формул

Формулы произведения синусов, косинусов и синуса на косинус можно вывести, основываясь на формулах сложения, а также на следующем свойстве равенств: если к левой и правой части верного равенства прибавить соответственно левую и правую части другого верного равенства, то получится верное равенство.

Для вывода формул произведения синусов и косинусов нам потребуются формулы косинуса суммы и косинуса разности вида и .

Сложив эти равенства, получаем , откуда следует, что и . Так доказана формула произведения косинусов.

Если же формулу косинуса суммы переписать как , после чего к этому равенству прибавить равенство , то легко получается формула произведения синусов вида .

Для вывода формулы произведения синуса на косинус достаточно сложить левые и правые части формул синуса суммы и синуса разности . Имеем , откуда следует, что .

Так мы вывели формулы произведения синусов, косинусов и синуса на косинус.

Примеры использования

Разберем несколько примеров использования формул произведения синусов, косинусов и синуса на косинус. Это сделаем для того, чтобы было понятно, как применяются рассматриваемые формулы для конкретных углов.

Начнем с того, что проверим справедливость, например, формул произведения синусов. Для этого возьмем , и убедимся, что для этих углов совпадают значения правой и левой частей равенства . Имеем (при необходимости обращайтесь к разделу таблица значений синуса, косинуса, тангенса и котангенса), и

Так как мы получили одинаковые значения, то формула произведения синусов справедлива для данных углов.

Читайте также:  Кварцевые лампы для дезинфекции помещения отзывы

В некоторых случаях формулы произведения позволяют вычислять значения тригонометрических выражений. Рассмотрим пример, подтверждающий наши слова.

Вычислите точное значение произведения синуса 75 градусов и косинуса 15 градусов.

Точные значения и нам неизвестны, поэтому мы не можем непосредственно вычислить требуемое значение. Однако ответить на вопрос задачи нам позволяет формула произведения синуса и косинуса. Действительно, сумма углов 75 и 15 градусов равна 90 градусов, а их разность равна 60 градусов, для данных углов мы знаем точные значения всех тригонометрических функций.

Итак,

.

Формулы произведения синусов, косинусов, синуса и косинуса используются для преобразования тригонометрических выражений, но эта тема требует более детального обсуждения.

Наиболее часто встречающиеся тригонометрические формулы:

(lacktriangleright) Основные тождества: [egin <|l|l|>hline sin^2 alpha+cos^2 alpha =1& mathrm, alpha cdot mathrm, alpha =1 \ &(sinalpha
e 0, cosalpha
e 0)\[0.5ex] hline &\ mathrm
, alpha=dfrac<sin alpha> <cos alpha>&mathrm, alpha =dfrac<cos alpha> <sin alpha>\&\ 1+mathrm^2, alpha =dfrac1 <cos^2 alpha>& 1+mathrm^2, alpha=dfrac1<sin^2 alpha>\&\ (cosalpha
e 0)& (sinalpha
e 0) \ hline end
]

(lacktriangleright) Формулы сложения углов: [egin <|l|r|>hline &\ sin<(alphapm eta)>=sinalphacdot cosetapm sinetacdot cosalpha & cos<(alphapm eta)>=cosalphacdot coseta mp sinalphacdot sineta\ &\ hline &\ mathrm, (alphapm eta)=dfrac<mathrm, alphapm mathrm, eta><1 mp mathrm, alphacdot mathrm, eta> & mathrm, (alphapmeta)=-dfrac<1mp mathrm, alphacdot mathrm, eta><mathrm, alphapm mathrm, eta>\&\ cosalphacoseta
e 0&sinalphasineta
e 0\ hline end
]

(lacktriangleright) Формулы двойного и тройного углов: [egin <|lc|cr|>hline sin <2alpha>=2sin alphacos alpha & qquad &qquad & cos<2alpha>=cos^2alpha -sin^2alpha\ sin alphacos alpha =dfrac12sin <2alpha>&& & cos<2alpha>=2cos^2alpha -1\ & & & cos<2alpha>=1-2sin^2 alpha\ hline &&&\ mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>\&&&\ cosalpha
e 0, cos2alpha
e 0 &&& sinalpha
e 0, sin2alpha
e 0\ hline &&&\ sin <3alpha>=3sin alpha -4sin^3alpha && & cos<3alpha>=4cos^3alpha -3cos alpha\&&&\ hline end
]

(lacktriangleright) Формулы понижения степени: [egin <|lc|cr|>hline &&&\ sin^2alpha=dfrac<1-cos<2alpha>>2 &&& cos^2alpha=dfrac<1+cos<2alpha>>2\&&&\ hline end]

(lacktriangleright) Формулы произведения функций: [egin <|c|>hline \ sinalphasineta=dfrac12igg(cos<(alpha-eta)>-cos<(alpha+eta)>igg)\\ cosalphacoseta=dfrac12igg(cos<(alpha-eta)>+cos<(alpha+eta)>igg)\\ sinalphacoseta=dfrac12igg(sin<(alpha-eta)>+sin<(alpha+eta)>igg)\\ hline end]

(lacktriangleright) Выражение синуса и косинуса через тангенс половинного угла: [egin <|l|r|>hline &\ sin<2alpha>=dfrac<2mathrm, alpha><1+mathrm^2, alpha> & cos<2alpha>=dfrac<1-mathrm^2, alpha><1+mathrm^2, alpha>\&\ cosalpha
e 0 & sinalpha
e 0\ hline end
]

(lacktriangleright) Формула вспомогательного аргумента: [egin <|c|>hline ext<Частный случай>\ hline \ sinalphapm cosalpha=sqrt2cdot sin<left(alphapm dfrac<pi>4
ight)>\\ sqrt3sinalphapm cosalpha=2sin<left(alphapm dfrac<pi>6
ight)>\\ sinalphapm sqrt3cosalpha=2sin<left(xpm dfrac<pi>3
ight)>\\ hline ext<Общий случай>\ hline\ asinalphapm bcosalpha=sqrtcdot sin<(alphapm phi)>, cosphi=dfrac a<sqrt>, sinphi=dfrac b<sqrt>\\ hline end
]

Читайте также:  Как включить навигацию на айфоне

Зная идею вывода формул, вы можете запомнить лишь несколько из них. Тогда остальные формулы вы всегда сможете быстро вывести.

Вывод всех основных тождеств был рассказан в предыдущем разделе “Введение в тригонометрию”.

(lacktriangleright) Вывод формулы косинуса разности углов (cos<(alpha -eta)>=cosalphacoseta+sinalphasineta)

Рассмотрим тригонометрическую окружность и на ней углы (alpha) и (eta) . Пусть этим углам соответствуют точки (A) и (B) соответственно. Тогда координаты этих точек: (A(cosalpha;sinalpha), B(coseta;sineta)) .

Рассмотрим ( riangle AOB: angle AOB=alpha-eta) . По теореме косинусов:

(AB^2=AO^2+BO^2-2AOcdot BOcdot cos(alpha-eta)=1+1-2cos(alpha-eta) (1)) (т.к. (AO=BO=R) – радиус окружности)

По формуле расстояния между двумя точками на плоскости:

Таким образом, сравнивая равенства ((1)) и ((2)) :

Отсюда и получается наша формула.

(lacktriangleright) Вывод остальных формул суммы/разности углов:

Остальные формулы с легкостью выводятся с помощью предыдущей формулы, свойств четности/нечетности косинуса/синуса и формул приведения (sin x=cos(90^circ-x)) и (cos x=sin (90^circ-x)) :

разделим числитель и знаменатель дроби на (cosalphacoseta
e 0)
(при (cosalpha=0 Rightarrow mathrm,(alphapmeta)=mp mathrm,eta) , при (coseta=0 Rightarrow mathrm,(alphapmeta)=pm mathrm,alpha) ):

Таким образом, данная формула верна только при (cosalphacoseta
e 0) .

5) Аналогично, только делением на (sinalphasineta
e 0) , выводится формула котангенса суммы/разности двух углов.

(lacktriangleright) Вывод формул двойного и тройного углов:

Данные формулы выводятся с помощью предыдущих формул:

1) (sin 2alpha=sin(alpha+alpha)=sinalphacosalpha+sinalphacosalpha=2sinalphacosalpha)

Используя основное тригонометрическое тождество (sin^2alpha+cos^2alpha=1) , получим еще две формулы для косинуса двойного угла:

разделим числитель и знаменатель дроби на (cos^2alpha
e 0) (при (cosalpha=0 Rightarrow mathrm,2alpha=0) ):

Таким образом, эта формула верна только при (cosalpha
e 0) , а также при (cos2alpha
e 0) (чтобы существовал сам (mathrm,2alpha) ).

По тем же причинам при (sinalpha
e 0, sin2alpha
e 0) .

5) (sin3alpha=sin(alpha+2alpha)=sinalphacos2alpha+cosalphasin2alpha=sinalpha(1-2sin^2alpha)+cosalphacdot 2sinalphacosalpha=)

6) Аналогично выводится, что (cos3alpha=cos(alpha+2alpha)=4cos^3alpha-3cosalpha)

(lacktriangleright) Вывод формул понижения степени:

Данные формулы — просто по-другому записанные формулы двойного угла для косинуса:

1) (cos2alpha=2cos^2alpha-1 Rightarrow cos^2alpha=dfrac<1+cos2alpha>2)

2) (cos2alpha=1-2sin^2alpha Rightarrow sin^2alpha=dfrac<1-cos2alpha>2)

Заметим, что в данных формулах степень синуса/косинуса равна (2) в левой части, а в правой части степень косинуса равна (1) .

(lacktriangleright) Вывод формул произведения функций:

1) Сложим формулы косинуса суммы и косинуса разности двух углов:

Получим: (cos(alpha+eta)+cos(alpha-eta)=2cosalphacoseta Rightarrow cosalphacoseta=dfrac12Big(cos(alpha-eta)+cos(alpha+eta)Big))

2) Если вычесть из формулы косинуса суммы косинус разности, то получим:

3) Сложим формулы синуса суммы и синуса разности двух углов:

(lacktriangleright) Вывод формул суммы/разности функций:

Обозначим (alpha+eta=x, alpha-eta=y) . Тогда: (alpha=dfrac2, eta=dfrac2) . Подставим эти значения в предыдущие три формулы:

Читайте также:  Как восстановить почту без пароля и телефона

Получили формулу суммы косинусов.

Получили формулу разности косинусов.

Получили формулу суммы синусов.

4) Формулу разности синусов можно вывести из формулы суммы синусов:

Аналогично выводится формула суммы котангенсов.

(lacktriangleright) Вывод формул выражения синуса и косинуса через тангенс половинного угла:

(разделим числитель и знаменатель дроби на (cos^2alpha
e 0) (при (cosalpha=0) и (sin2alpha=0) ):)

2) Так же, только делением на (sin^2alpha) , выводится формула для косинуса.

(lacktriangleright) Вывод формул вспомогательного угла:

Данные формулы выводятся с помощью формул синуса/косинуса суммы/разности углов.

Рассмотрим выражение (asin x+bcos x) . Домножим и разделим это выражение на (sqrt,) :

(asin x+bcos x=sqrtleft(dfrac a<sqrt>sin x+ dfrac b<sqrt>cos x
ight)=sqrtig(a_1sin x+b_1cos xig))

Заметим, что таким образом мы добились того, что (a_1^2+b_1^2=1) , т.к. (left(dfrac a<sqrt>
ight)^2+left(dfrac b<sqrt>
ight)^2=dfrac=1)

Таким образом, можно утверждать, что существует такой угол (phi) , для которого, например, (cos phi=a_1, sin phi=b_1) . Тогда наше выражение примет вид:

(sqrt,ig(cos phi sin x+sin phicos xig)=sqrt,sin (x+phi)) (по формуле синуса суммы двух углов)

Значит, формула выглядит следующим образом: [<large,sin (x+phi),>> quad ext <где >cos phi=dfrac a<sqrt>] Заметим, что мы могли бы, например, принять за (cos phi=b_1, sin phi=a_1) и тогда формула выглядела бы как [asin x+bcos x=sqrt,cos (x-phi)]

(lacktriangleright) Рассмотрим некоторые частные случаи формул вспомогательного угла:

(a) sin xpmcos x=sqrt2,left(dfrac1<sqrt2>sin xpmdfrac1<sqrt2>cos x
ight)=sqrt2, sin left(xpmdfrac<pi>4
ight))

(b) sqrt3sin xpmcos x=2left(dfrac<sqrt3>2sin xpm dfrac12cos x
ight)=2, sin left(xpmdfrac<pi>6
ight))

(c) sin xpmsqrt3cos x=2left(dfrac12sin xpmdfrac<sqrt3>2cos x
ight)=2,sinleft(xpmdfrac<pi>3
ight))

Определения синуса, косинуса, тангенса и котангенса.

Знаки тригонометрических функций:

Значения тригонометрических функций

Формулы синуса, косинуса, тангенса и котангенса угла (–α):

sin (–α) = – sin α
cos (–α) = cos α
tg (–α) = – tg α
ctg (–α) = – ctg α

Все формулы приведения можно получить, пользуясь следующими правилами:
1. В правой части формулы ставится тот знак, который имеет левая часть при условии

2. Если в левой части формулы угол равен /2 ± или 3/2±, то синус заменяется на косинус, тангенс на котангенс и наоборот, если угол равен ± или 2, то замены не происходит.

Формулы двойного угла.

Формулы перехода от суммы к произведению.

Формулы перехода от произведения к сумме.

Формулы понижения степени.

Преобразование выражения a·cos + b·sin путем введения вспомогательного аргумента.

,

где вспомогательный аргумент определяется из условий

Ссылка на основную публикацию
Adblock detector