Трехзначного числа делится число

Трехзначного числа делится число

Деление – одна из четырех основных математических операций (сложение, вычитание, умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение. 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

Найти сумму цифр делимого.

Поделить на 3 или 9 (в зависимости от того, что вам нужно).

Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение. В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1. Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2. На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Читайте также:  Как делаются сноски в курсовой работе

Задача 3. Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4. Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг. Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг. Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг. Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг. Ставим точку под делителем.

5 шаг. После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг. Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг. Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг. Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг*. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3)(4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 — класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Когда я учился в школе и решал задачки по математике, очень часто хотелось узнать, делится одно число на другое (предполагается, что делитель меньше 10) или нет без остатка. Обычно при решении таких примеров учителя запрещали пользоваться калькулятором, а вычисления в «столбик» были относительно длительны. Я нередко ошибался и получал несуразные результаты. А знание того, что число заведомо разделится без остатка, было бы здесь совсем не лишним.

Читайте также:  Умный дом в японии

Потом, не помню в каком классе, нам рассказали о некоторых признаках делимости. Давайте вместе вспомним их. (Предупреждение: я не являюсь ни учителем математики, ни аспирантом математических наук, поэтому буду излагать не научно правильно, а как умею. Учителям математики просьба — не придираться по этому поводу).

Число без остатка делится на 2, если делится на 2 его последняя цифра. То есть если последняя цифра — четная. Объясняется это просто. Число 10 — четное. Сколько десятков к четной цифре ни добавляй, оно все равно останется четным.

По-другому с тройкой. Число без остатка делится на 3, если делится на 3 сумма всех его цифр. Например, 327. Сумма его цифр: 3+2+7=12. 12 делится на 3 без остатка, значит, и число 327 делится на 3 без остатка. (327: 3 = 109).

Далее. Число без остатка делится на 4, если делится на 4 число из двух последних его цифр. Число 100 делится без остатка на 4, и, следовательно, сколько сотен ни добавляй, оно все равно будет делиться на 4. Если двухзначное число выходит за таблицу умножения, то от него следует отнять 40 и узнать, делится ли полученное число на 4.

Например, 56. Вы, допустим, затрудняетесь сказать, делится ли оно на 4. Тогда от его нужно отнять 40. Получается 16, а оно делится на 4. Следовательно, и 56 делится на 4. А также 156, 356, 756, 1556, 3756 — все они будут делиться на 4. Значение имеют лишь две последние цифры числа.

Очень простой признак делимости на 5. Число без остатка делится на 5, если оно заканчивается цифрой 5, либо цифрой 0. Здесь, я думаю, комментарии не требуются.

Про признак делимости на 6 в школе не рассказывают. Однако любой ученик с более-менее живым умом легко до него додумается. Поскольку 6 = 2×3, то для того, чтобы число делилось на 6, оно должно одновременно делиться и на 2, и на 3. А признаки делимости на эти числа нам уже известны. Число без остатка делится на 6, если оно четное и если его сумма цифр делится на 3.

Важно! Я в школьные годы очень часто делал ошибки, думая, что если сумма цифр числа делится на 6, то и само число будет делиться на 6. Это не так. Например, 123. Сумма его чисел равна 6. Но оно не делится на 6, так как является нечетным (123: 6 = 20,5).

Ну и еще в школе рассказывают про признак делимости на 9. Он полностью аналогичен признаку делимости на 3. Число без остатка делится на 9, если делится на 9 сумма всех его цифр.

Как видим, в этом списке нет признаков делимости на 7 и 8. Недавно я, пораскинув мозгами на досуге, сумел найти эти признаки.

Начнем с числа 8 — это проще. Число 100 не делится без остатка на 8 (100: 8 = 12,5). И, следовательно, такой финт, как с четверкой, не пройдет. Например, 332. Число из двух последних цифр делится на 8, но 332: 8 = 41,5. Однако на 8 делится без остатка число 1000 (1000: 8 = 125). Таким образом, если трехзначное число, например 256, делится на 8, то к нему можно прибавить тысячу (которая тоже делится на 8), и оно по-прежнему будет делиться на 8.

256: 8 = 32.
1256: 8 = 157.

Далее: 2256, 5256, 15256, 27256 — все они будут делиться на 8. Таким образом, число без остатка делится на 8, если делится на 8 число из трех последних его цифр.

Здесь, наверно, у многих возникнет ехидная усмешка. Мол, спасибо, ты нам сильно помог. Как же мы узнаем, делится ли на 8 трехзначное число? Не волнуйтесь, есть способ.

Поскольку 8 = 2×4, то чтобы число делилось на 8, требуется, чтобы оно делилось и на 4. Это условие необходимое, но не достаточное. Далее можно поступить по аналогии с тысячей. Мы уже выяснили, что 100 не делится на 8 без остатка. Однако число 200 делится — 200: 8 = 25. Таким образом, если в трехзначном числе число из двух последних цифр делится на 8, а первая цифра четная, то и само трехзначное число разделится на 8. Если же первая цифра нечетная, то число из двух последних цифр должно делиться на 4, но не делиться на 8.

Читайте также:  Дополнения для опера браузера

Подытожим все сказанное. Число без остатка делится на 8, если делится на 8 трехзначное число из трех последних цифр числа. Трехзначное число без остатка делится на 8, если:

1) его первая цифра четная, а число из двух последних цифр делится на 8;
2) его первая цифра нечетная, а число из двух последних цифр делится на 4, но не делится на 8.

Звучит это, возможно, грозно, однако ничего сложного здесь нет. Потренируйтесь, и вы быстро научитесь.

Ну и осталось у нас число 7. Раньше я думал, что для него признак делимости найти невозможно. Но оказалось, это не так. Случайно я заметил, что без остатка на 7 делится число 1001 (1001: 7 = 143). Соответственно, на 7 будут делиться 2002, 3002,7007 , если к какому-либо трехзначному числу, кратному семи, прибавить что-то подобное, то оно тоже будет делиться на 7.

Значит, чтобы узнать, что число делится на 7, нужно от трехзначного числа, образованного тремя последними цифрами исходного, отнять число тысяч. Если полученное число делится на 7, то и исходное будет делиться на 7. Например, 3752. Здесь трехзначное число, образованное последними цифрами — 752, число тысяч — 3. Вычитаем: 752 — 3 = 749. Таким образом, задача свелась к отысканию делимости трехзначного числа 749.

Здесь у многих опять возникнет ехидная усмешка. Мол, как же узнать, делится ли это число на 7? Сразу скажу, способ есть. Подробно расписывать не буду, предлагаю читателям самим додуматься. Скажу лишь основную предпосылку: на 7 без остатка делится число 105 (105: 7 = 15).

Чтобы узнать, делится ли трехзначное число на 7, нужно число сотен умножить на 5 и полученное число отнять от двухзначного числа, образованного двумя последними цифрами. Так в числе 749 число сотен — 7; 7×5 = 35; 49 — 35 = 14, а 14 делится на семь. Следовательно, и 749, и 3752 делятся на 7 без остатка.

749: 7 = 107.
3752: 7 = 536.

Сформулируем признак делимости на 7. Число больше трехзначного без остатка делится на 7, если делится на 7 трехзначное число, равное разности между числом, образованным тремя последними цифрами исходного и количеством тысяч в числе. Трехзначное число без остатка делится на 7, если делится на 7 число, равное разности между числом, образованным двумя последними цифрами исходного и количеством сотен в числе, умноженным на 5.

Формулировка довольно сложная, поэтому разберем пример. Возьмем число 17 969. На первом этапе надо от трехзначного числа, образованного тремя последними цифрами (969), отнять количество тысяч в числе (17). Получим 969 — 17 = 952. Таким образом, наша задача свелась к отысканию делимости на 7 этого числа. В этом состоит второй этап. Для этого нужно от числа, образованного двумя последними цифрами (52), отнять число сотен (9), умноженное на 5 (9×5 = 45); 52 — 45 =7. Семь без остатка делится на 7, значит, делятся на 7 и 952 (952: 7 = 136), и 17 969 (17 969: 7 = 2 567).

На этом у меня все. Если есть вопросы, задавайте.

Ответ

Наименьшее трехзначное число, которое можно поделить на 3 без остатка -102

Далее идет 105, 108, 111, 114, 117, 120 . 261,264, 267. 384, 387. 414, 417, 420, 423. 504, 507. и так далее.

Следовательно, каждое третье трёхзначное число будет делиться на 3.

Самое последнее трехзначное число, которое делится на 3 без остатка-это 999.

В общей сложности таких чисел всего 300.

Имеются в виду только целые числа , если учитывать ещё и дробные, их будет много больше.

А вообще делятся на 3 те числа, сумма цифр которых кратна трем.

Пример :642 (6+4+2=12)-значит делится на 3.

Ссылка на основную публикацию
Adblock detector