Толщина меди на печатной плате

Толщина меди на печатной плате

Печатная плата (англ. printed circuit board, PCB, или printed wiring board, PWB) — пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.
В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:

  • односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.
  • двухсторонние (ДПП): два слоя фольги.
  • многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат

По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах]. По свойствам материала основы:

Печатные платы могут иметь свои особенности, в связи с их назначением и требованиями к особым условиям эксплуатации (например, расширенный диапазон температур) или особенности применения (например, платы для приборов, работающих на высоких частотах).
Материалы Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс. Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору. В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д)[2], и керамика.
Гибкие платы делают из полиимидных материалов, таких как каптон.

Гетинакс применяют при средних условиях эксплуатации.

  • Достоинства : дешево, меньше сверлить, интеграция в нагретом состоянии.
  • Недостатки: может расслаиваться при механической обработке, может впитывать влагу, понижает свои диэлектрические свойства и коробится.

Лучше использовать гетинакс облицованный гольваностойкой фольгой.

Фольгированный стеклотекстолит – получают прессованием, пропитывание эпоксидной смолой слоев стеклоткани и приклеенной поверхностной пленки ВФ-4Р медной электротехнической фольги толщиной 35-50 микрон.

  • Достоинства: хорошие диэлектрические свойства.
  • Недостатки: дорого в 1,5-2 раза.

Применяют для односторонних и двусторонних плат. Для многослойных ПП применяются тонкие фольгированные диэлектрики ФДМ-1, ФДМ-2 и полугибкие РДМЭ-1. Основой таких материалов служит пропитывающий эпоксидный слой стеклоткани. Толщина электротехнической меди гольваностойкой фольги 35,18 микрон. Для изготовления многослойных ПП используется прокладочная ткань, например СПТ-2 толщиной 0,06- 0,08 мм , является нефольгированным материалом.

Изготовление Изготовление ПП возможно аддитивным или субтрактивным методом. В аддитивном методе проводящий рисунок формируется на нефольгированном материале путём химического меднения через предварительно нанесённую на материал защитную маску. В субтрактивном методе проводящий рисунок формируется на фольгированном материале путём удаления ненужных участков фольги. В современной промышленности применяется исключительно субтрактивный метод.
Весь процесс изготовления печатных плат можно разделить на четыре этапа:

  • Изготовление заготовки (фольгированного материала).
  • Обработка заготовки с целью получения нужных электрического и механического вида.
  • Монтаж компонентов.
  • Тестирование.

Часто под изготовлением печатных плат понимают только обработку заготовки (фольгированного материала). Типовой процесс обработки фольгированного материала состоит из нескольких этапов: сверловка переходных отверстий, получение рисунка проводников путем удаления излишков медной фольги, металлизация отверстий, нанесение защитных покрытий и лужение, нанесение маркировки.[7] Для многослойных печатных плат добавляется прессование конечной платы из нескольких заготовок.

Фольгированный материал — плоский лист диэлектрика с наклеенной на него медной фольгой. Как правило, в качестве диэлектрика используют стеклотекстолит. В старой или очень дешевой аппаратуре используют текстолит на тканевой или бумажной основе, иногда именуемый гетинаксом. В СВЧ устройствах используют фторсодержащие полимеры (фторопласты). Толщина диэлектрика определяется требуемой механической и электрической прочностью, наибольшее распространение получила толщина 1,5 мм. На диэлектрик с одной или двух сторон наклеивают сплошной лист медной фольги. Толщина фольги определяется токами, под которые проектируется плата. Наибольшее распространение получила фольга толщиной 18 и 35 мкм, гораздо реже встречаются 70, 105 и 140 мкм. Такие значения исходят из стандартных толщин меди в импортных материалах, в которых толщина слоя медной фольги исчисляется в унциях (oz) на квадратный фут. 18 мкм соответствует ½ oz и 35 мкм — 1 oz.

Алюминиевые печатные платы Отдельную группу материалов составляют алюминиевые металлические печатные платы.] Их можно разделить на две группы.

  • Первая группа — решения в виде листа алюминия с качественно оксидированной поверхностью, на которую наклеена медная фольга. Такие платы нельзя сверлить, поэтому обычно их делают только односторонними. Обработка таких фольгированных материалов выполняется по традиционным технологиям химического нанесения рисунка. Иногда вместо алюминия применяют медь или сталь, ламинированные тонким изолятором и фольгой. Медь имеет большую теплопроводность, нержавеющая сталь платы обеспечивает коррозионную стойкость.
  • Вторая группа подразумевает создание токопроводящего рисунка непосредственно в алюминии основы. Для этой цели алюминиевый лист оксидируют не только по поверхности, но и на всю глубину основы, согласно рисунку токопроводящих областей, заданному фотошаблоном.

Получение рисунка проводников При изготовлении плат используются химические, электролитические или механические методы воспроизведения требуемого токопроводящего рисунка, а также их комбинации.

Химический способ изготовления печатных плат из готового фольгированного материала состоит из двух основных этапов: нанесение защитного слоя на фольгу и травление незащищенных участков химическими методами. В промышленности защитный слой наносится фотолитографическим способом с использованием ультрафиолетово-чувствительного фоторезиста, фотошаблона и источника ультрафиолетового света. Фоторезистом сплошь покрывают медь фольги, после чего рисунок дорожек с фотошаблона переносят на фоторезист засветкой. Засвеченный фоторезист смывается, обнажая медную фольгу для травления, незасвеченный фоторезист фиксируется на фольге, защищая её от травления.

Фоторезист бывает жидким или пленочным. Жидкий фоторезист наносят в промышленных условиях, так как он чувствителен к несоблюдению технологии нанесения. Пленочный фоторезист популярен при ручном изготовлении плат, однако он дороже. Фотошаблон представляет собой УФ-прозрачный материал с распечатанным на нём рисунком дорожек. После экспозиции фоторезист проявляется и закрепляется как и в обычном фотохимическом процессе. В любительских условиях защитный слой в виде лака или краски может быть нанесен шелкотрафаретным способом или вручную. Радиолюбители для формирования на фольге травильной маски применяют перенос тонера с изображения, отпечатанного на лазерном принтере («лазерно-утюжная технология»). Под травлением фольги понимают химический процесс перевода меди в растворимые соединения. Незащищенная фольга травится, чаще всего, в растворе хлорного железа или в растворе других химикатов, например медного купороса, персульфата аммония, аммиачного медно-хлоридного, аммиачного медно-сульфатного, на основе хлоритов, на основе хромового ангидрида. При использовании хлорного железа процесс травления платы идет следующим образом: FeCl3+Cu → FeCl2+CuCl. Типовая концентрация раствора 400 г/л, температура до 35°С. При использовании персульфата аммония процесс травления платы идет следующим образом: (NH4)2S2O8+Cu → (NH4)2SO4+CuSO4].После травления защитный рисунок с фольги смывается.

Механический способ изготовления предполагает использование фрезерно-гравировальных станков или других инструментов для механического удаления слоя фольги с заданных участков.

До недавнего времени лазерная гравировка печатных плат была слабо распространена в связи с хорошими отражающими свойствами меди на длине волны наиболее распространенных мощных газовых СО лазеров. В связи с прогрессом в области лазеростроения сейчас начали появляться промышленные установки прототипирования на базе лазеров.

Читайте также:  На экране ноутбука появились мерцающие полосы

Металлизация отверстий Переходные и монтажные отверстия могут сверлиться, пробиваться механически (в мягких материалах типа гетинакса) или лазером (очень тонкие переходные отверстия). Металлизация отверстий обычно выполняется химическим или механическим способом.
Механическая металлизация отверстий выполняется специальными заклепками, пропаянными проволочками или заливкой отверстия токопроводящим клеем. Механический способ дорог в производстве и потому применяется крайне редко, обычно в высоконадежных штучных решениях, специальной сильноточной технике или радиолюбительских условиях.
При химической металлизации в фольгированной заготовке сначала сверлятся отверстия, затем они металлизируются и только потом производится травление фольги для получения рисунка печати. Химическая металлизация отверстий — многостадийный сложный процесс, чувствительный к качеству реактивов и соблюдению технологии. Поэтому в радиолюбительских условиях практически не применяется. Упрощенно состоит из таких этапов:

  • Нанесение на диэлектрик стенок отверстия проводящей подложки. Эта подложка очень тонкая, непрочная. Наносится химическим осаждением металла из нестабильных соединений, таких как хлорид палладия.
  • На полученную основу производится электролитическое или химическое осаждение меди.

В конце производственного цикла для защиты довольно рыхлой осажденной меди применяется либо горячее лужение, либо отверстие защищается лаком (паяльной маской). Нелуженые переходные отверстия низкого качества являются одной из самых частых причин отказа электронной техники.

Многослойные платы (с числом слоев металлизации более 2) собираются из стопки тонких двух- или однослойных печатных плат, изготовленных традиционным способом (кроме наружных слоев пакета — их пока оставляют с нетронутой фольгой). Их собирают «бутербродом» со специальными прокладками (препреги). Далее выполняется прессование в печи, сверление и металлизация переходных отверстий. В последнюю очередь делают травление фольги внешних слоев.
Переходные отверстия в таких платах могут также делаться до прессования. Если отверстия делаются до прессования, то можно получать платы с так называемыми глухими отверстиями (когда отверстие есть только в одном слое бутерброда), что позволяет уплотнить компоновку.

Возможны такие покрытия как:

  • Защитно-декоративные лаковые покрытия («паяльная маска»). Обычно имеет характерный зелёный цвет. При выборе паяльной маски следует учитывать, что некоторые из них непрозрачны и под ними не видно проводников.
  • Декоративно-информационные покрытия (маркировка). Обычно наносится с помощью шелкографии, реже — струйным методом или лазером.
  • Лужение проводников. Защищает поверхность меди, увеличивает толщину проводника, облегчает монтаж компонентов. Обычно выполняется погружением в ванну с припоем или волной припоя. Основной недостаток — значительная толщина покрытия, затрудняющая монтаж компонентов высокой плотности. Для уменьшения толщины излишек припоя при лужении сдувают потоком воздуха.
  • Химические, иммерсионные или гальванические покрытия фольги проводников инертными металлами (золотом, серебром, палладием, оловом и т.п.). Некоторые виды таких покрытий наносятся до этапа травления меди.
  • Покрытие токопроводящими лаками для улучшения контактных свойств разъемов и мембранных клавиатур или создания дополнительного слоя проводников.

После монтажа печатных плат возможно нанесение дополнительных защитных покрытий, защищающих как саму плату, так и пайку и компоненты.
Механическая обработка На одном листе заготовки зачастую помещается множество отдельных плат. Весь процесс обработки фольгированной заготовки они проходят как одна плата, и только в конце их готовят к разделению. Если платы прямоугольные, то фрезеруют несквозные канавки, облегчающие последующее разламывание плат (скрайбирование, от англ. scribe царапать). Если платы сложной формы, то делают сквозную фрезеровку, оставляя узкие мостики, чтобы платы не рассыпались. Для плат без металлизации вместо фрезеровки иногда сверлят ряд отверстий с маленьким шагом. Сверление крепежных (неметаллизированных) отверстий также происходит на этом этапе.

Практические советы по компоновке печатных плат

Инженеры, как правило, уделяют самое пристальное внимание к схемам, новейшим компонентами и коду как важным составляющим электронного проекта, но иногда критически важной частью электроники, компоновкой печатной платы, пренебрегают. Плохая компоновка печатной платы может вызвать проблемы в работоспособности и надежности устройства. Данная статья содержит практические советы по компоновке печатных плат, которые могут помочь вашим проектам работать правильно и надежно.

Печатные платы

Размеры проводников

Реальные медные дорожки обладают сопротивлением. Это означает, что, когда через дорожку протекает ток, на ней падает напряжение, рассеивается мощность, повышается температура. Сопротивление определяется по формуле:

Разработчики печатных плат для контроля сопротивления дорожек на печатной плате чаще всего используют длину, толщину и ширину. Сопротивление является физическим свойство металла, используемого для создания дорожки. Разработчики печатных плат не могут реально изменить физические свойства меди, поэтому сосредоточьтесь на размерах проводника, которые вы можете контролировать.

Толщина проводников на печатных платах измеряется в унциях меди. Одна унция меди – это толщина, которую мы бы измерили, если бы равномерно распределили 1 унцию меди на 1 кв. фут. Эта толщина составляет 1,4 тысячных дюйма. Многие разработчики печатных плат используют толщину в 1 или 2 унции меди, но многие производители печатных плат могут обеспечить толщину и 6 унций меди. Обратите внимание, что тонкие элементы, такие как контактные площадки, которые находятся близко друг к другу, сложно изготовить из толстой меди. О возможностях изготовления проконсультируйтесь с производителем, у которого собираетесь заказывать печатные платы.

Соответствие толщины медной фольги к её весу в унциях (oz)

Вес меди (oz) Толщина (мкм)
1/8 5
1/4 9
1/2 18
1 35
2 70
3 105

Используйте калькулятор расчета ширины дорожки печатной платы, чтобы определить, насколько толстые и широкие дорожки вам необходимы. Ориентируйтесь на повышение температуры на 5°C. Если у вас на плате есть лишнее место, то увеличивайте ширину дорожек, ведь это ничего не стоит.

При создании многослойной платы помните, что дорожки на внешних слоях имеют лучшее охлаждение, чем на внутренних слоях, потому что тепло с внутренних слоев перед рассеиванием в окружающую среду должно проходить сквозь слои меди и материала печатной платы.

Делайте петли маленькими

Петли, особенно высокочастотные петли, должны быть как можно меньше. Маленькие петли обладают меньшей индуктивностью и сопротивлением. Размещение петель над полигоном земли приводит к уменьшению индуктивности. Уменьшение петель уменьшает высокочастотные выбросы напряжения, вызываемые (V=Lfrac

) . Уменьшение петель помогает уменьшить количество сигналов, которые через индуктивные связи наводятся в петлях от внешних источников или передаются от петель наружу. К этому необходимо стремиться, только если вы не проектируете антенну. Также не делайте петли большими в схемах на операционных усилителях, чтобы предотвратить появление в схеме шумов.

Петлевая антенна на печатной плате

Размещение блокировочного конденсатора

Помещайте блокировочные конденсаторы как можно ближе к выводам питания и земли интегральных микросхем, чтобы максимизировать эффективность развязки. Размещение конденсаторов дальше от микросхемы приводит появлению паразитной индуктивности. Использование нескольких переходов от площадки вывода конденсатора до слоя земли уменьшает индуктивность.

Блокировочный конденсатор (конденсатор развязки)

Кельвиновские соединения

Кельвиновские соединения полезны для измерений. Кельвиновские соединения для уменьшения паразитных сопротивлений и индуктивностей выполняются в конкретных местах. Например, кельвиновские соединения для резистора измерения тока помещаются точно на площадках установки резистора, а не на произвольных местах печатных дорожек. Хотя на схеме размещение соединений и на площадках установки резистора, и на произвольных местах может выглядеть одинаково, реальные дорожки на печатных платах обладают индуктивностью и сопротивлением, которые могут помешать вашим измерениям, если вы не используете кельвиновские соединения.

Кельвиновские соединения к шунту измерения тока

Читайте также:  Как скопировать контакты с nokia на андроид

Держите цифровые и шумящие дорожки подальше от аналоговых дорожек

Параллельные дорожки или проводники образуют конденсатор. Размещение дорожек близко друг к другу создает емкостную связь между сигналами на дорожках, особенно если это высокочастотные сигналы. Держите высокочастотные и шумящие дорожки подальше от дорожек, на которых шум недопустим.

Земля – это не земля

Земля – это не идеальный проводник. Позаботьтесь о том, чтобы проложить шумные земли подальше от сигналов, которые должны быть чистыми. Сделайте проводники земли достаточно широкими для работы с электрическими токами, которые будут протекать через них. Размещение земляного полигона непосредственно под сигнальными проводниками уменьшает импеданс этих дорожек, что очень хорошо.

Земля на печатной плате

Размер и количество переходов

Переходы обладают индуктивностью и сопротивлением. Если вы проводите дорожку с одной стороны печатной платы на другую сторону, и вам необходимо, чтобы индуктивность и сопротивление не увеличились, используйте несколько переходов. Большие переходы имеют более низкое сопротивление. Это особенно полезно для конденсаторов фильтров и узлов с высокими токами. Используйте калькулятор размера переходов.

Использование печатной платы в качестве радиатора

Поместите дополнительную медь вокруг компонента поверхностного монтажа, чтобы обеспечить дополнительную площадь поверхности для более эффективного рассеивания тепла. В технических описаниях некоторых компонентов (особенно у силовых диодов, силовых MOSFET транзисторов, стабилизаторов напряжения) есть рекомендации по использованию поверхности печатных плат в качестве радиаторов.

Использование печатной платы в качестве радиатора

Тепловые переходы

Переходы можно использовать для отвода тепла с одной стороны печатной платы на другую сторону. Это особенно полезно, когда печатная плата установлена на радиаторе или на шасси, которое может дополнительно рассеять тепло. Большие переходы переносят тепло более эффективно, чем небольшие переходы. Несколько переходов переносят тепло и снижают рабочую температуру компонентов более эффективно, чем один переход. Более низкие рабочие температуры способствуют повышению надежности.

Тепловые переходы

Тепловые барьеры

Тепловой барьер – это выполнение соединений между контактной площадкой компонента и проводником или заливкой, которое облегчает пайку. Эти соединения делаются короткими, чтобы уменьшить влияние на электрическое сопротивление. Если на выводах компонента тепловые барьеры не используются, то температура компонента будет ниже благодаря лучшему тепловому соединению с проводниками или заливками, которые могут рассеивать тепло, но при этом компонент будет труднее припаять или отпаять.

Тепловые барьеры

Расстояние между проводниками и монтажными отверстиями

Оставляйте место между монтажными отверстиями и медными дорожками или заливками; это поможет предотвратить опасность короткого замыкания. Паяльная маска не считается надежным изолятором, поэтому следите за расстоянием между медью и любыми крепежными деталями.

Расстояние между проводниками и монтажными отверстиями

Компоненты, чувствительные к нагреву

Держите компоненты, чувствительные к нагревы, подальше от компонентов, которые выделяют тепло. Примеры компонентов, чувствительных к теплу, включают в себя термопары и электролитические конденсаторы. Размещение термопар вблизи источников тепла может привести к бесполезности температурных измерений. Размещение электролитических конденсаторов вблизи компонентов, выделяющих тепло, сократит срок их службы. Компоненты, которые генерируют тепло, могут включать в себя мостовые выпрямители, диоды, MOSFET транзисторы, индуктивности и резисторы. Выделяемое тепло зависит от тока, протекающего через компоненты.

Заключение

В данной статье рассмотрены некоторые основные практические советы по компоновке печатных плат, которые могут положительно повлиять на функциональность и надежность ваших разработок. Знаете еще какие-либо советы и трюки? Оставляйте их в комментариях!

Пока мы заканчиваем последние приготовления к серийному выпуску сервера VESNIN, хочу провести образовательный эксперимент — опишу наши внутренние методики и рекомендации для расчёта стека печатных плат. С одной стороны, приятно, если наш опыт будет кому-то полезен. С другой, мы сами рады получить дельные комментарии, чтобы улучшить нашу практику. Если интересно прочитать и обсудить — добро пожаловать под кат.

Сразу к делу — вот о чём написано в этой статье:

  • Материалы для производства печатных плат
  • Учет изменения толщины препрега в процессе изготовления PCB
  • Учет Etch Factor
  • Особенности расчета толщины металлизации
  • Учет паяльной маски

Все описанное ниже — это не Know How, а по сути, собранные воедино и систематизированные данные из разных источников. На абсолютное знание мы также не претендуем.
Итак, поехали.

Материалы для производства печатных плат

Преамбула (как обычно это происходит).

Обычно инженер примерно оценивает стек платы, передает его производителю PCB. В ответ ему приходит много китайских бланков с предложениями — на которые он обычно соглашается. Сводятся они к изменению толщин ядер/препрегов, а также проводников и зазоров в CAM редакторе.

Обычно оно и нормально. Но тут есть три минуса:

  • Итоговое изделие отличается от того, что описано в вашей КД (иногда чуть более, чем полностью).
  • Повторяемости результата при переходе к другому производителю — нет. Например у нас есть борд, который запускался на двух разных фабах с совершенно разными стеками (при этом исходные данные в обоих случая были одни и те же).
  • Если толщины проводников на печатной плате находятся в зоне 4 mil — то любое изменение их ширины в сторону уменьшения весьма серьезно влияет на потери. Если между проводником 6 mil и 5 mil разница незначительна, то между 5 mil и 4 mil — весьма существенна, а 4 mil и 3 mil — это с точки зрения потерь разные вселенные. (Вообще на наш взгляд идеальные топологии дифференциальной пары — 6-6-6 или 7-7-7).

Поэтому мы предпочитаем сформировать стек так, чтобы его зависимость от особенностей конкретного производителя PCB сводилась к минимуму. Если вы работаете с одним и тем же вендором, то вполне реально сформировать стек так, чтобы его модификация производителем не требовалась совсем. Это экономия 1—2 недель при подготовке к производству.

Наверняка кто-то нибудь захочет спросить — что лучше, сильносвязанные или слабосвязанные дифференциальные пары. Наше мнение: лучше слабосвязанные — их проще выровнять по длине. Можно позволить себе более серьезные бампы. Никаких особенных преимуществ сильносвязанных пар перед слабосвязанными (если не рассматривать странные топологии типа 5-14-5) c точки зрения SI на наш взгляд — нет. Для любителей формальных правил: одна-две ширины между проводниками в паре — нормально. Больше — уже не очень. Меньше — трудно выравнивать. Несмотря на то, что ЭМС показатели сильносвязанных пар сильно лучше, в абсолютном выражении это «сильно» — несущественно.

Для того, чтобы более-менее точно сформировать стек печатной платы — нужно знать параметры конкретных ядер и препрегов применяемого материала. В даташитах приводятся усредненные параметры для всей группы и для точного расчета эти данные не годятся. Данную информацию можно запросить как у производителя материала, так и у производителя PCB. Это таблица, которая выглядит это примерно так (у каждого производителя материала она своя):


Толщины разных типов препрегов — как правило, одни и те же у разных производителей. Поэтому информация на приведенной картинке — актуальна и юзабельна безотносительно к производителю материала (Dk/Df, понятно, у всех разные).

При проектировании стека печатной платы необходимо учитывать, что производители PCB, как правило, делают поправку на ламинацию, снижая значения диэлектрической постоянной (Dk) как препрегов, так и «ядер» примерно на 0.2 по отношению к значениям, приведенным в документации производителя материалов.

Если значения Dk/Df приведены для разных частот, то рекомендуется использовать значения данных параметров для частоты, наиболее близкой к частоте Найквиста наиболее быстрого интерфейса на PCB. Например, если в PCB присутствует PCI Express Gen3, то следует использовать значения Dk/Df для частоты, наиболее близкой к 4 ГГц.

Читайте также:  Как подключить литий ионные аккумуляторы

Кто-то возразит: как же, ведь полоса того же Gen3 простирается аж до 18 ГГц. Это правда — но спецификация PCIe регламентирует RL и IL до Найквиста, да и не пройдут все эти адовые гигагерцы через коннекторы, переходные отверстия и печатную плату — затухнут по дороге. А если пройдут — это большой вопрос, понравится ли вам результат.

В ситуации, когда на PCB присутствует несколько разных высокоскоростных интерфейсов — не стоит в рамках стека одной платы использовать значения Dk/Df для разных частот. Несмотря на то, что такой подход является более верным с точки зрения расчета импеданса — он вызовет большие трудности при согласовании стека с производителем PCB (их тестовое оборудование настраивается на одну конкретную частоту).

В случае, если значения Dk/Df значительно варьируются с частотой, а контроль импеданса критичен — имеет смысл, получив значения импеданса для реальной частоты интерфейса, пересчитать его, взяв Dk для некоторой единой частоты (самого критичного интерфейса). «Отнормированное» таким образом значение импеданса — указать в качестве целевого для контроля производителем PCB.

Например вы делаете расчет 100 Омной трассы для частоты 4 ГГц, используете значение Dk для 4 ГГц, и в соответствии с полученными данными осуществляете трассировку. Далее, если у вас например есть интерфейсы, требующие расчета для 10 ГГц — подставьте значение Dk для более высокой частоты в исходный расчет. Допустим, при этом вы получите значение импеданса 105 Ом. Наш совет: вот 105 Ом и укажите производителю PCB для контроля. Не стоить морочить ему голову разными Dk для разных частот на одном и том же слое.

Также не повредит на берегу поинтересоваться с каким стеклом работает фаб, чтобы не было потом проблем со сроками поставки. Потому что есть популярные препреги и не очень. Обычно на складе у него всегда в достатке 3-4 типа, из которых и стоит выстраивать стек PCB. Материалов с низкими потерями обычно на складе не бывает, в силу ограниченного срока хранения — поэтому применение чего-то особенного это всегда вопрос не столько цены, сколько сроков изготовления.

Учет изменения толщины препрега в процессе изготовления PCB

В таблице ниже приведены абсолютные значения изменения толщины одного слоя препрега для разных условий применения. Допуск на все значения составляет 10%.

Условия Изменение толщины препрега при начальном значении
Не более 2.3 mil Более 2.3 mil
Прилегание к меди 0.5 oz с 30% заполнением 0.4 mil 0.4 mil
Прилегание к меди 0.5 oz с 70% заполнением 0.1 mil 0.2 mil
Прилегание к меди 1 oz с 30% заполнением 0.8 mil 0.9 mil
Прилегание к меди 1 oz с 70% заполнением 0.3 mil 0.4 mil
Прилегание к меди 2 oz с 30% заполнением 1.8 mil 1.9 mil
Прилегание к меди 2 oz с 70% заполнением 0.8 mil 0.8 mil
Расположен между двумя слоями препрега 9% 10%
Прилегание к внешнему слою не изменяется не изменяется

Для более точного расчета изменения толщины препрега можно использовать следующее выражение:

В случае, когда между слоями металлизации расположен один слой препрега — значения изменений толщины для соответствующих условий должны суммироваться, так как изменение толщины препрега на самом деле представляет собой вдавливание в него проводящего рисунка.

При формировании послойного описания PCB следует указывать финишное значение препрега. При этом порция препрега, вдавленная в рисунок металлизации, не должна включаться в значение финишной толщины в документации, передаваемой производителю PCB.

Пример

Необходимо рассчитать финишную толщину стека, приведенного на рисунке. На всех слоях металлизации используется медь 1 oz. Исходная толщина препрега 2116 равна 5.1 mil.

Результирующий стек будет иметь вид:

Тип слоя Начальная толщина Изменение толщины Финишная толщина
Внешний 1.35 mil 1.35 mil
Слой 2116 5.1 mil 5.1 mil
Слой 2116 5.1 mill 0.9 mil 4.2 mil
Внутренний сигнальный 1.35 mil 1.35 mil
Core 39 mil 39 mil
Внутренний Plane 1.35 mil 1.35 mil
Слой 2116 5.1 mil 0.4 mil 4.7 mil
Слой 2116 5.1 mil 5.1 mil
Внешний 1.35 mil 1.35 mil
Итого: 63.5 mil ± 10%

Учет Etch Factor

Выражение для расчета Etch Factor для процесса электрического осаждения меди представлено на рисунке:

В таблице приведены значения Etch Factor для разных типов металлизации для различных производителей. Как видите, они сильно разнятся. Поэтому значение EF — это первое, что вы должны уточнить у вашего PCB-партнера.

Тип слоя Фабрика 1 Фабрика 2 Фабрика 3 Фабрика 4
EF W2-W1 EF W2-W1 EF W2-W1 EF W2-W1
Внешний 0.5 oz 3.4 — 4 1 mil 3.4 — 4 1 mi 3.4 — 2 1.5 mil 2.6
Внешний 1 oz 1.66 2.4 mil 2.6
Внутренний 0.5 oz 1.75 0.8 mil 4.33 0.3 mil 1.73 1.75 mil 3
Внутренний 1 oz 2.4 1 mil 4.33 0.6 mil 2.6 1 mil 3
Внутренний 2 oz 1.5 — 2 mil 4.33 1.2 mil 2.6 2 mil 3
Внутренний 3 oz 2.6 3 mil 3
Внутренний 4 oz 2.3 4.5 mil 3

Для случаев, когда информация о значении EF от конкретного производства отсутствует – можно считать, что EF принимает следующие значения:

  • внешние слои — 2.6
  • внутренние слои — 3.7

Особенности расчета толщины металлизации

Металлизация внешних слоев

При расчете металлизации внешних слоев значение толщины меди весом 1 oz, как правило, принимается равным 1.37 mil. Рекомендуется отдельно задавать вес базовой меди и вес осаждаемой меди. Итоговое значение получается в результате суммирования этих двух параметров. Типовые значения приведены в таблице:

Base copper Plating copper
0.7oz 1oz 2oz
0.5oz 1.644 mil 2.055 mil 3.425 mil
1oz 2.329 mil 2.74 mil 4.11 mil
2oz 3.699 mil 4.11 mil 5.48 mil
3oz 5.069 mil 5.48 mil 6.85 mil

Металлизация внутренних слоев

Для внутренних слоев значение толщины меди весом 1 oz, как правило, принимается равным 1.3 mil.

Учет паяльной маски

При учёте паяльной маски опираемся на следующую схему:

В случаях, когда явно не указано иное, можно считать, что паяльная маска имеет следующие параметры:

  • Dk — 3.7
  • Df — 0.025
  • Толщина — 0.8 mil

Большинство производителей при учете влияния паяльной маски считает значения C1, C2 и C3 равными друг другу.

Некоторые фабрики считают значения C1 и C3 равными толщине металлизации (T1), а C2 – 0.8 mil. Правильность данного подхода приблизительно подтверждается реальными данными, полученными после производства PCB.

Один из наших PCB-партнеров считает толщину паяльной маски на сплошных участках меди 0.79 — 1.18 mil, на краях проводников 0.2 mil. Также данный производитель при расчете стека рекомендует не включать паяльную маску в расчет, так как при травлении внешних слоев происходит малейший перетрав (то есть увеличение значения импеданса), который маской компенсируется в номинал теоретического измерения импеданса внешних слоев без маски.
Это, кстати, хороший пример того, что при работе с данным производством — толщина трасс на вашей PCB будет меньше, чем заложено в рисунке печатной платы.

Ссылка на основную публикацию
Adblock detector