Свойство касательной плоскости к сфере

Свойство касательной плоскости к сфере

Опр: Плоскость имеющая со сферой только одну общую току называется касательной плоскостью к сфере, общая точка касания.

Теорема: Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Доказательство: (стр.132)

Рассмотрим плоскость α, касающуюся сферы с центром О в точке А (рис.). Докажем, что радиус ОА перпендикулярен к плоскости α.

Предположим, что это не так. Тогда радиус ОА является наклонной к плоскости α, и, следовательно, расстояние от центра сферы до плоскости α меньше радиуса сферы. Поэтому сфера и плоскость пересекаются по окружности. Но это противоречит тому, что плоскость α — касательная, т.е. сфера и плоскость α имеют только одну общую точку. Полученное противоречие доказы­вает, что радиус ОА перпендикулярен к плоскости α. Теорема доказана.

Докажем обратную теорему.

Теорема: Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.

Доказательство: (стр. 132)

Из условия теоремы следует, что данный радиус является перпендикуляром, проведенным из центра сферы к данной плоскости. Поэтому расстояние от центра сферы до плоскости равно радиусу сферы, и, следовательно, сфера и плоскость имеют только одну общую точку. Это и означает, что данная плоскость является касательной.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9789 — | 7481 — или читать все.

Определение. Плоскость, имеющая с шаровой поверхностью только одну общую точку, называется касательной плоскостью. Возможность существования такой плоскости доказывается следующей теоремой.

Теорема. Плоскость (Р, черт. 140), перпендикулярная к радиусу (АО) в конце его, лежащем на поверхности шара, есть касательная плоскость.

Читайте также:  Как в pdf выделить текст другим цветом

Возьмём на плоскости Р произвольную точку В и проведём прямую ОВ. Так как ОВ — наклонная, а ОА — перпендикуляр к плоскости Р, то ОВ > ОА. Поэтому точка В лежит вне шаровой поверхности; следовательно, у плоскости Р есть только одна общая точка А с шаровой поверхностью; значит, эта плоскость касательная.

Обратная теорема. Касательная плоскость (Р, черт. 140) перпендикулярна к радиусу (ОА), проведённому в точку касания.

Так как, по определению, точка А есть единственная общая точка у плоскости с шаровой поверхностью, то всякая другая точка плоскости лежит вне шаровой поверхности и, следовательно, отстоит от центра на большее расстояние, чем А; таким образом, отрезок ОА есть кратчайшее расстояние точки О от плоскости Р, т. е. ОА есть перпендикуляр к Р.

Прямая, имеющая одну общую точку с шаровой поверхностью, называется касательной к шару. Легко видеть, что существует бесчисленное множество прямых, касающихся шара в данной точке. Действительно, всякая прямая (АС, черт. 140), лежащая в плоскости, касательной к шару в данной точке (А), и проходящая через точку касания (А), есть касательная к шару в этой точке.

Ссылка на основную публикацию
Adblock detector