Скорость распространения волны имеет вид

Скорость распространения волны имеет вид

Любая волна распространяется с некоторой скоростью. Под скоростью волны понимают ско­рость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

,

где v — скорость волны, Т — период колебаний в волне, λ (греческая буква лямбда) — длина волны.

Формула выражает связь длины волны с ее скоростью и периодом. Учитывая, что пери­од колебаний в волне обратно пропорционален частоте v, т. е. Т = 1/v, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

,

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны — это пространственный период волны. На графике волны (рис. выше) длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны, находящимися в одинаковой фазе колебаний. Это как бы мгновенные фотогра­фии волн в колеблющейся упругой среде в моменты времени t и t + Δt. Ось х совпадает с направле­нием распространения волны, на оси ординат отложены смещения s колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания час­тиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

§1 Волны в упругой среде

Если колеблющееся тело (камертон, струна, мембрана и т.д.) находится в упругой среде, то оно приводит в колебательное движение соприкасающиеся с ним частицы среды, вследствие чего в прилегающих к этому телу элементах среды возникают периодические

деформации (например, сжатия и растяжения). При этих деформациях в среде появляются упругие силы, стремящиеся вернуть элементы среды к первоначальным состояниям равновесия; благодаря взаимодействию соседних элементов среды, упругие деформации будут передаваться от одних участков среды к другим, более удаленным от колеблющегося тела.

Таким образом, периодические деформации, вызванные в каком-нибудь месте упругой среды, будут распространяться в среде с некоторой скоростью, зависящей от ее физических свойств. При этом частицы среды совершают колебательное движение около положений равновесия. От одних участков среды к другим передается только состояние деформации.


Процесс распространения колебательного движения в среде называется волновым процессом или просто волной. В зависимости от характера возникающих при этом упругих деформаций различают продольные и поперечные волны. В продольных волнах частицы среды колеблются вдоль направления распространений колебаний. В поперечных волнах частицы среды колеблются перпендикулярно направлению распространения волны.


Жидкие и газообразные среды не имеют упругости сдвига, поэтому в них возбуждаются только продольные волны, распространяющиеся в виде чередующихся сжатий и разряжений. Волны, возбуждаемые на поверхности воды, являются поперечными, они обязаны своим существованием земному притяжению.

В твёрдых телах могут быть вызваны и продольные и поперечные волны.

Предположим, что точечный источник волны начал возбуждать в среде колебания в момент времени t = 0; по истечению времени t это колебание распространится по различным направлениям на расстояние r = vit , где vi — скорость волны в данном направлении. Поверхность, до которой доходит колебание в некоторый момент времени, называется фронтом волны. Форма фронта волна определяется конфигурацией источника колебаний и свойствами среды. В однородных средах скорость распространения волна везде одинакова. Среда называется изотропной, если эта скорость одинакова по всем направлениям. Фронт волна от точечного источника колебаний в однородной и изотропной среде имеет вид сферы; такие волны называются сферическими.

Читайте также:  Geforce gtx 1060 sli

В неоднородной и не изотропной (анизотропной) среде, а также от неточечных источников колебаний фронт волны имеет сложную форму. Если фронт волны представляет собой плоскость и эта форма сохраняется по мере распространения колебаний в среде, то волну называют плоской.

Поверхности волны, точки которых колеблются в одинаковых фазах, называются волновыми или фазовыми поверхностями.

График, показывающий распределение в среде колеблющейся величины в данный момент времени, называют формой волны.

§2 Уравнение плоской волны

Уравнение волны позволяет найти смещение от положения равновесия колеблющейся точки с координатами (х, у, z ) в момент времен t .

Пусть колебания точек, лежащих в плоскости х = 0 происходят по закона косинуса

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того, чтобы пройти путь от х = 0 до этой плоскости волне требуется время v – скорость, распространения волны, следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на τ от колебаний частиц в плоскости х = 0, т.е, будут иметь вид

— уравнение падающей, бегущей волны.

(уравнение волны, распространявшейся в направлении оси X).

S — смещение точки от положения равновесия в плоскости, находящейся на расстоянии х от источника колебаний;

А — амплитуда волны;

φ — начальная фаза.’

Для одной волны можно выбрать х и t так, чтобы φ =0.

Для нескольких волн это не удаётся.

Если волна распространяется в сторону убывания координаты х, то колебания в плоскости х начнутся раньше на , чем в плоскости х = 0. Тогда уравнение отраженной волны запишется в виде

— уравнение отраженной волны.

§3. Понятие о фазовой скорости.

Связь между фазовой и групповой скоростями

  1. Зафиксируем какое-либо значение фазы, стоящей в уравнении бегущей волны

(1)

Из него следует связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение . Вытекающее из него значение даёт скорость, с которой перемещается данное значение фазы. Продифференцировав (1), получим

k волновое число, λ — длина волны.

Таким образом, скорость v в уравнении распространяющейся волны является фазовой скоростью, т.е. она показывает, с какой скоростью распространяется фаза волны (скорость перемещения фазы).

Во всех реальных волновых процессах приходиться иметь дело с более сложными волнами, имеющими несинусоидальный характер. Такую сложную волну можно представить как сумму косинусоидальных или синусоидальных волн, или как группу таких волн. В реальных условиях наблюдается перемещение групп волн, каждая из которых отличается от другой по частоте. В каждый момент времена можно найти точку, в которой наблюдается максимум колебаний, возникающих в результате наложения этих волн. В этой точке фаза любой группы волн будет одинаковой. Эта точка называется центром группы волн. Положение центра группы волн со временем изменяется. Этой точке соответствует максимум энергии колеблющейся группы волн. Энергия колеблющейся группы волн переносится со скоростью, равной скорости перемещения центра группы волн. Эту скорость называют групповой скорстью. Она обозначается u .

  1. Связь между групповой и фазовой скоростями.

Чтобы найти эту связь воспользуемся тем, что в центре группы волн фазы всех волн одинаковы. Групповая скорость равна

Колебательная система может отдавать энергию во внутреннюю среду. Эта передача энергии становится возможной благодаря тому, что частицы среды сами представляют собой миниатюрные колебательные системы. Молекулы среды связаны друг с другом силами, законы которых в известных границах подобны законам упругих сил. Если одна из частиц окажется выведенной из положения равновесия, то силы, действующие на нее со стороны соседних частиц, заставляют ее вновь вернуться к устойчивому положению. Вместе с тем, по закону равенства действия и противодействия, соседние частицы также подвергнутся влиянию смещающих сил и в свою очередь будут выведены из устойчивого положения. Таким образом, каждое возмущение, однажды возникнув в определенном участке среды, будет постепенно распространяться, захватывая частицы, все дальше и дальше отстоящие от места начального возмущения.

Читайте также:  Программа даймон тулс для виндовс 10

Колебательный процесс благодаря взаимодействию частиц будет распространяться в среде с некоторой конечной скоростью. Процесс распространения колебаний в среде называется волновым движением или просто волной. Для нашего случая это будет упругая или механическая волна.

Различают продольные и поперечные волны. Вид волн, распространяющихся в среде, существенно зависит от упругих свойств среды.

Волна, распространяющаяся в том же направлении, в котором происходят колебания частиц среды, называется продольной волной.

Продольные волны образуются в телах, обладающих упругостью объема, т.е. противодействующих деформации объемного сжатия. Это свойственно всем телам, поэтому они образуются в любых средах: твердых, жидких, газообразных. К продольным волнам, в частности, относятся звуковые, инфразвуковые и ультразвуковые.

Волна, в которой колебательное движение совершается перпендикулярно к направлению распространения колебаний, называется поперечной.

Поперечные упругие волны образуются только в твердых телах, которые обладают упругостью формы, т.е. противодействуют деформации сдвига (например, сейсмические волны в земной коре при землетрясениях; волны, бегущие вдоль натянутой струны; крутильные волны, вызываемые попеременным закручиванием и раскручиванием конца длинного стержня).

Продольные и поперечные колебания частиц среды, несущей волну, представляют собой частные случаи волнового процесса. Существуют и другие волны, в которых колебательные движения складываются из одновременных продольных и поперечных смещений. Это волны вздутия, поверхностные.

Уравнение волны.

Рассмотрим поперечную волну. В поперечной волне частицы среды не смещаются в направлении распространения волны. Но колебания каждой последующей частицы среды запаздывают по фазе относительно предыдущих частиц. Вследствие этого гребни и впадины волны, заметные для глаза, перемещаются в направлении распространения волны. Это и отмечается наблюдателем как движение волны.

Под скоростью волны понимается скорость, с которой в среде перемещаются одинаковые фазы колебаний частиц. Эта скорость называется фазовой скоростью волны. Скорость волны зависит от упругих свойств (а также плотности) среды.

Расстояние между двумя ближайшими точками среды, колебания которых происходят в одинаковой фазе, называется длиной волны или расстояние, на которое распространяются колебания в среде за время, равное одному периоду колебания. Она численно равняется произведению скорости V распространения волны на период Т или отношению скорости распространения волны к частоте колебания:

= VT = (1.1)

Поскольку скорость распространения волны зависит от свойств среды, длина волны при переходе волны из одной среды в другую изменяется, хотя частота колебаний остается неизменной.

Кроме , А, или Т колебаний волна характеризуется формой колебания частиц в волне. Так же как и колебания, волны делятся на простые (гармонические) и сложные.

Колебания, возбуждаемые в одной точке, в однородной изотропной среде распространяются от нее равномерно по всем направлениям, такая волна называется сферической. Если источник колебаний имеет значительную плоскую поверхность, то волна от него будет распространяться направленным потоком перпендикулярно поверхности источника; такая волна называется плоской.

Составим уравнение плоской гармонической волны, позволяющее определить смещение S точки Б среды, находящейся на любом расстоянии x от начальной точки А, в направлении распространения волны в любой момент времени. Пусть для начальной точки А уравнение колебания: SA = A cost.

Точка Б совершает колебание с запаздыванием по фазе на угол = t, соответствующий промежутку времени t, за который волна проходит расстояние x между точками А и Б. Тогда для точки Б уравнение колебания будет:

Читайте также:  Как вернуть старую версию прошивки на андроид

Подставляя значение t =, где V — скорость распространения волны, получим:

SБ = .

SБ = .

Таким образом, смещение S точек среды в упругой волне является функцией двух переменных: времени t и расстояния x точки от центра возбуждения колебаний, то есть S = f1(x,t).

Если выбрать определенный момент времени (t1 = const), то уравнение дает зависимость смещения от расстояния x: St = f2(x), то есть величину смещений точек среды вдоль направления x в заданный момент времени t1. График этой зависимости (как бы моментальный снимок волны) называют графиком волны. Для простой (гармонической) волны график имеет форму синусоиды или косинусоиды.

Зависимость между смещением S точки, ее координатой x и временем t, выраженная в дифференциальной форме называется волновым уравнением.

Для составления уравнения плоской волны находим частные производные второго порядка от смещения S по времени t и координате x:

Таким образом, вторая производная смещения по времени пропорциональна второй производной смещения по координате. Коэффициент пропорциональности равен квадрату скорости распространения волны V. Это и есть дифференциальное уравнение плоской волны, распространяющейся в направлении оси x со скоростью V (см. 1.4). Оно в наиболее общем виде описывает распространение волнового процесса.

Основные характеристики (амплитуда, период или частота, длина волны и форма колебаний) продольной волны, её уравнение и графику аналогичны поперечной.

Энергетические характеристики волны.

При волновом движении происходит перенос энергии, которая состоит из кинетической и потенциальной энергий колеблющихся частиц среды. Причем потенциальная энергия обусловлена деформацией вещества при взаимном смещении частиц. В отличие от колебаний свободного тела в волне не происходит взаимного перехода кинетической и потенциальной энергии частиц. Мгновенные значения той и другой энергии изменяются одновременно (в фазе) соответственно изменению смещения частиц.

Для мгновенного значения энергии (потенциальной и кинетической) одной частицы можно записать:

,

где S— смещение частицы, — частота колебания частицы, A— амплитуда колебания частицы, V— скорость волнового процесса, в котором участвует частица, m – масса одной частицы.

Из формулы 1.5 следует, что мгновенные значения энергии каждой частицы среды изменяются во времени с удвоенной частотой колебания, причем в каждый момент времени эти значения для различных частиц отличаются. Однако среднее значение энергии за период колебания для всех частиц одинаково и составляет: eср =.

Рассчитаем энергию волны для некоторого объема V среды, в которой она распространяется.

Если в единице объема среды содержится N частиц, то = Nm —плотность среды и среднее значение энергии волны в объеме V будет:

Еср =

где — объемная плотность энергии волны.

Величина, численно равная средней энергии Еср, переносимой волной в единицу времени t через заданную поверхность S, перпендикулярную направлению распространения волны, называется потоком энергии через эту поверхность:

Ф =

и измеряется в единицах мощности — Вт.

Поток энергии, приходящийся на единицу поверхности, называется плотностью потока энергии:

и измеряется в Вт/м 2 . Плотность потока энергии называют также интенсивностью волны.

В векторной форме:

.

Плотность потока энергии, переносимого волной, можно рассматривать как вектор, совпадающий по направлению с вектором скорости волны.

Вектор , показывающий направление распространения волны и равный потоку энергии, проходящему через единичную площадку, перпендикулярную этому направлению, называютвектором Умова:

.

Вектор Умова для упругой волны зависит от плотности среды, квадрата амплитуды колебания частиц, квадрата частоты колебаний и скорости распространения волны.

Николай Алексеевич Умов (1846-1915) является исследователем потока энергии. Идеи о движении энергии были изложены в его диссертации "Уравнения движения энергии в телах", защищенной им в 1874 году на физико-математическом факультете Московского университета. И только через десять лет к таким же выводам о движении энергии пришел английский физик Пойнтинг. Имя Умова вошло в историю физики.

Ссылка на основную публикацию
Самый лучший телефон по всем характеристикам
2018 год удивил пользователей широким выбором: здесь и Samsung Galaxy S9, и iPhone Xs, и более приемлемый Huawei Mate 20....
Регистр сведений соответствие объектов информационных баз
Логично ожидать, что при синхронизации данных, как начальной, так и основанной на регулярной основе, одинаковые данные в приложениях будут сопоставлены...
Регистрация gmail com без номера телефона
Google – передовой поисковый сервис, давно изменивший способ взаимодействия с интернетом. Именно здесь впервые ввели поиск по картинкам, предусмотрели голосовое...
Самый лучший смартфон xiaomi 2018
Собрали всё лучшее. Была идея выпустить гид по всему модельному ряду, но это обречённая затея, потому что у Xiaomi куча...
Adblock detector