Шифр гаммирования относится к

Шифр гаммирования относится к

Гаммирование.В этом способе шифрование выполняется путем сложения символов исходного текста и ключа по модулю, равному числу букв в алфавите. Если в исходном алфавите, например, 33 символа, то сложение производится по модулю 33. Такой процесс сложения исходного текста и ключа называется в криптографии наложением гаммы.

Пусть символам исходного алфавита соответствуют числа от 0 (А) до 32 (Я). Если обозначить число, соответствующее исходному символу, x, а символу ключа – k, то можно записать правило гаммирования следующим образом:

где z – закодированный символ, N — количество символов в алфавите, а сложение по модулю N — операция, аналогичная обычному сложению, с тем отличием, что если обычное суммирование дает результат, больший или равный N, то значением суммы считается остаток от деления его на N. Например, пусть сложим по модулю 33 символы Г (3) и Ю (31):

3 + 31 (mod 33) = 1,

то есть в результате получаем символ Б, соответствующий числу 1.

Наиболее часто на практике встречается двоичное гаммирование. При этом используется двоичный алфавит, а сложение производится по модулю два. Операция сложения по модулю 2 часто обозначается , то есть можно записать:

Операция сложения по модулю два в алгебре логики называется также "исключающее ИЛИ" или по-английски XOR.

Пример: Предположим, нам необходимо зашифровать десятичное число 14 методом гаммирования с использованием ключа 12. Для этого вначале необходимо преобразовать исходное число и ключ (гамму) в двоичную форму:14(10)=1110(2), 12(10)=1100(2). Затем надо записать полученные двоичные числа друг под другом и каждую пару символов сложить по модулю два. При сложении двух двоичных знаков получается 0, если исходные двоичные цифры одинаковы, и 1, если цифры разные:

Сложим по модулю два двоичные числа 1110 и 1100:

Исходное число 1 1 1 0

Результат 0 0 1 0

В результате сложения получили двоичное число 0010. Если перевести его в десятичную форму, получим 2. Таким образом, в результате применения к числу 14 операции гаммирования с ключом 12 получаем в результате число 2.

Каким же образом выполняется расшифрование? Зашифрованное число 2 представляется в двоичном виде и снова производится сложение по модулю 2 с ключом:

Зашифрованное число 0 0 1 0

Результат 1 1 1 0

Переведем полученное двоичное значение 1110 в десятичный вид и получим 14, то есть исходное число.

Комбинированные (составные) шифры.

Два самых известных полевых шифра в истории криптографии — ADFGX и ADFGVX. Таблица шифрозамен ADFGX представляет собой матрицу 5 х 5, а для ADFGVX – 6 х 6. Строки и столбцы обозначаются буквами, входящими в название шифра. Пример таблицы шифрозамен для шифра ADFGVX применительно к русскому алфавиту показан на следующем рисунке.

Читайте также:  Как правильно наклеить пленку на айфон

Шифрозамена для буквы исходного текста состоит из букв, обозначающих строку и столбец, на пересечении которых она находится.

FD AX GA FD FG FV DA

На втором этапе для выполнения перестановки полученный набор шифрозамен вписывается построчно сверху-вниз в таблицу, количество столбцов в которой строго определено (ADFGX) или соответствует количеству букв в ключевом слове (ADFGVX). Нумерация столбов либо оговаривается сторонами (ADFGX) либо соответствует положению букв ключевого слова в алфавите, как в шифре вертикальной перестановки (ADFGVX). Например, для полученного выше набора шифрозамен перестановочная таблица с ключевым словом «ДЯДИНА» показана на следующем рисунке.

На третьем этапе буквы выписываются из столбцов в соответствии с их нумерацией, при этом считывание происходит по столбцам, а буквы объединяются в пятибуквенные группы.

Таким образом, окончательная шифрограмма для рассматриваемого примера будет выглядеть «AVFFD AFXGG FDDA».

Еще одним частным случаем многоалфавитной подстановки является гаммирование. В этом способе шифрование выполняется путем сложения символов исходного текста и ключа по модулю, равному числу букв в алфавите. Если в исходном алфавите, например, 33 символа, то сложение производится по модулю 33. Такой процесс сложения исходного текста и ключа называется в криптографии наложением гаммы.

Пусть символам исходного алфавита соответствуют числа от 0 (А) до 32 (Я). Если обозначить число, соответствующее исходному символу, x, а символу ключа – k, то можно записать правило гаммирования следующим образом:

где z – закодированный символ, N — количество символов в алфавите, а сложение по модулю N — операция, аналогичная обычному сложению, с тем отличием, что если обычное суммирование дает результат, больший или равный N, то значением суммы считается остаток от деления его на N. Например, пусть сложим по модулю 33 символы Г (3) и Ю (31):

3 + 31 (mod 33) = 1,

то есть в результате получаем символ Б, соответствующий числу 1.

Наиболее часто на практике встречается двоичное гаммирование. При этом используется двоичный алфавит, а сложение производится по модулю два. Операция сложения по модулю 2 часто обозначается , то есть можно записать:

Операция сложения по модулю два в алгебре логики называется также "исключающее ИЛИ" или по-английски XOR.

Рассмотрим пример. Предположим, нам необходимо зашифровать десятичное число 14 методом гаммирования с использованием ключа 12. Для этого вначале необходимо преобразовать исходное число и ключ (гамму) в двоичную форму: 14(10)=1110(2), 12(10)=1100(2). Затем надо записать полученные двоичные числа друг под другом и каждую пару символов сложить по модулю два. При сложении двух двоичных знаков получается 0, если исходные двоичные цифры одинаковы, и 1, если цифры разные:

Читайте также:  Лджи игры на телевизоре

Сложим по модулю два двоичные числа 1110 и 1100:

Исходное число 1 1 1 0

Результат 0 0 1 0

В результате сложения получили двоичное число 0010. Если перевести его в десятичную форму, получим 2. Таким образом, в результате применения к числу 14 операции гаммирования с ключом 12 получаем в результате число 2.

Каким же образом выполняется расшифрование? Зашифрованное число 2 представляется в двоичном виде и снова производится сложение по модулю 2 с ключом:

Зашифрованное число 0 0 1 0

Результат 1 1 1 0

Переведем полученное двоичное значение 1110 в десятичный вид и получим 14, то есть исходное число.

Таким образом, при гаммировании по модулю 2 нужно использовать одну и ту же операцию как для зашифрования, так и для расшифрования. Это позволяет использовать один и тот же алгоритм, а соответственно и одну и ту же программу при программной реализации, как для шифрования, так и для расшифрования.

Операция сложения по модулю два очень быстро выполняется на компьютере (в отличие от многих других арифметических операций), поэтому наложение гаммы даже на очень большой открытый текст выполняется практически мгновенно.

Благодаря указанным достоинствам метод гаммирования широко применяется в современных технических системах сам по себе, а также как элемент комбинированных алгоритмов шифрования.

Сформулируем, как производится гаммирование по модулю 2 в общем случае:

  • символы исходного текста и гамма представляются в двоичном коде и располагаются один под другим, при этом ключ (гамма) записывается столько раз, сколько потребуется;
  • каждая пара двоичных знаков складывается по модулю два;
  • полученная последовательность двоичных знаков кодируется символами алфавита в соответствии с выбранным кодом.

На рис. 2.6 показано, как применяется гаммирование к тексту с русскими символами. Символы кодируются в соответствии с принятой кодировкой, а затем производится сложение по модулю 2.

При использовании метода гаммирования ключом является последовательность, с которой производится сложение – гамма. Если гамма короче, чем сообщение, предназначенное для зашифрования, гамма повторяется требуемое число раз. Так в примере на рис. 2.6 длина исходного сообщения равна двенадцати байтам, а длина ключа – пяти байтам. Следовательно, для зашифрования гамма должна быть повторена 2 раза полностью и еще один раз частично.

Рис. 2.6.Механизм гаммирования

Чем длиннее ключ, тем надежнее шифрование методом гаммирования. Связь длины ключа с вероятностью вскрытия сообщения, а также некоторые принципы дешифрования сообщений, закрытых методом гаммирования, обсуждаются в "Поточные шифры и генераторы псевдослучайных чисел. Часть 2" и "Шифрование, помехоустойчивое кодирование и сжатие информации" . На практике длина ключа ограничена возможностями аппаратуры обмена данными и вычислительной техники, а именно выделяемыми объемами памяти под ключ, временем обработки сообщения, а также возможностями аппаратуры подготовки и записи последовательностей ключей. Кроме того, для использования ключа вначале необходимо каким-либо надежным способом доставить его обеим сторонам, обменивающимся сообщениями. Это приводит к возникновению проблемы распределения ключей, сложность решения которой возрастает с увеличением длины ключа и количества абонентов в сети передачи сообщений.

Читайте также:  Автопланшеты 15 в 1

Под гаммированием понимают наложение на открытые данные по определенному закону гаммы шифра (двоичного числа, сформированного на основе генератора случайных чисел) [3] .

Гамма шифра – псевдослучайная последовательность, вырабатываемая по определенному алгоритму, используемая для шифровки открытых данных и дешифровки шифротекста.

Общая схема шифрования методом гаммирования представлена на рис. 4.3.

Рис. 4.3. Схема шифрования методом гаммирования

Принцип шифрования заключается в формировании генератором псевдослучайных чисел (ГПСЧ) гаммы шифра и наложении этой гаммы на открытые данные обратимым образом, например, путем сложения по модулю два. Процесс дешифрования данных сводится к повторной генерации гаммы шифра и наложении гаммы на зашифрованные данные. Ключом шифрования в данном случае является начальное состояние генератора псевдослучайных чисел. При одном и том же начальном состоянии ГПСЧ будет формировать одни и те же псевдослучайные последовательности.

Перед шифрованием открытые данные обычно разбивают на блоки одинаковой длины, например, по 64 бита. Гамма шифра также вырабатывается в виде последовательности блоков той же длины.

Стойкость шифрования методом гаммирования определяется главным образом свойствами гаммы – длиной периода и равномерностью статистических характеристик. Последнее свойство обеспечивает отсутствие закономерностей в появлении различных символов в пределах периода. Полученный зашифрованный текст является достаточно трудным для раскрытия. По сути дела гамма шифра должна изменяться случайным образом для каждого шифруемого блока.

Обычно разделяют две разновидности гаммирования – с конечной и бесконечной гаммами. При хороших статистических свойствах гаммы стойкость шифрования определяется только длиной периода гаммы. При этом, если длина периода гаммы превышает длину шифруемого текста, то такой шифр теоретически является абсолютно стойким, т.е. его нельзя вскрыть при помощи статистической обработки зашифрованного текста, а можно раскрыть только прямым перебором. Криптостойкость в этом случае определяется размером ключа.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9216 — | 7812 — или читать все.

Ссылка на основную публикацию
Что нужно для капельницы в домашних условиях
Капельница на дому делается при неблагоприятных условиях, когда необходимость в процедуре есть, но нет возможности, обратиться к квалифицированному медику. Совет:...
Цифровой тв тюнер dvb t2 для телевизора
К сожалению, не все старые или бюджетные телевизоры имеют встроенный тюнер для цифрового или кабельного вещания. Тюнер необходим для того,...
Цифровой телевизионный ресивер smp131hdt2
Сегодня мы познакомимся с новинкой цифровых телевизионных ресиверов, работающих в стандарте DVB-T2, от компании BBK SMP131HDT2. Компания BBK является лидером...
Что нужно для усиления сигнала интернета
Многие ценят дачную тишь да гладь именно за отсутствие всяческой связи с миром, кроме экстренной голосовой. Однако куда больше таких,...
Adblock detector