Перевести из системы в систему

Перевести из системы в систему

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Система счисления — это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 — красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.

Перевод в десятичную систему счисления

Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на X n , где X — основание исходного числа, n — номер разряда. Затем суммировать полученные значения.

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2 n , где n — номер разряда.

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Читайте также:  Survey link update что это
Триада 000 001 010 011 100 101 110 111
Цифра 1 2 3 4 5 6 7

Перевод из двоичной системы в шестнадцатеричную

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2 n , где n — номер разряда, и сложим результаты.

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Цифра 1 2 3 4 5 6 7 8 9 A B C D E F

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Цифра 1 2 3 4 5 6 7
Триада 000 001 010 011 100 101 110 111

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра 1 2 3 4 5 6 7 8 9 A B C D E F
Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Перевод числа из одной системы счисления в другую

Началось все с простого калькулятора, который мог переводить из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную — Перевод числа в другие системы счисления.
Потом один из пользователей запросил возможность переводить число из десятичной системы в систему с любым другим основанием.
Так появился калькулятор, в котором можно было указывать основание системы счисления, в которую надо перевести десятичное число — Перевод из десятичной системы счисления.
Ну а теперь наш пользователь попросил возможность переводить из любой системы счисления в любую — первод из одной системы в другую, и вот родился универсальный калькулятор.
Вводим число, например, FF (напомню, что для систем счисления с основанием больше десяти традиционно используются заглавные латинские буквы), вводим основание системы счисления этого числа — 16. Потом вводим основание системы счисления, в которую надо преобразовать это число — 10. Получаем результат — 255 в десятичной системе счисления.

Читайте также:  Как выглядит пс4 про

Внимание! Сообщение для тех, кто не умеет пользоваться поиском. Калькулятор, который переводит дробные числа, здесь Перевод дробных чисел из одной системы счисления в другую.

Пример №2 . Представить двоичное число 101.102 в нормализованном виде, записать в 32-битом стандарте IEEE754.
Таблица истинности

Способы представления чисел

Алгоритм перевода чисел из одной системы счисления в другую

Пример №1 .


Перевод из 2 в 8 в 16 системы счисления.
Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

Пример №2 . 1010111010,1011 = 1.010.111.010,101.1 = 1272,518
здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.
Пример №3 . 1010111010,1011 = 10.1011.1010,1011 = 2B12,13HEX
здесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2 , 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

Пример №4 .
Пример перевода из двоичной в десятичную систему счисления. Пример перевода из восьмеричной в десятичную систему счисления. Пример перевода из шестнадцатеричной в десятичную систему счисления.

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
    • Из двоичной системы счисления
      • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
      • Для перевода числа в восьмеричную необходимо разбить число на триады.
        Например, 1000110 = 1 000 110 = 1068
      • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.
        Например, 1000110 = 100 0110 = 4616
      Читайте также:  Установка linux mint на virtualbox

      Позиционной называется система, для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.
      Таблица соответствия систем счисления:

      Двоичная СС Шестнадцатеричная СС
      0000
      0001 1
      0010 2
      0011 3
      0100 4
      0101 5
      0110 6
      0111 7
      1000 8
      1001 9
      1010 A
      1011 B
      1100 C
      1101 D
      1110 E
      1111 F

      Таблица для перевода в восьмеричную систему счисления

      Двоичная СС Восьмеричная СС
      000
      001 1
      010 2
      011 3
      100 4
      101 5
      110 6
      111 7

      Пример №2 . Перевести число 100,12 из десятичной системы счисления в восьмеричную систему счисления и обратно. Пояснить причины расхождений.
      Решение.
      1 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.

      Целая часть от деления Остаток от деления
      100 div 8 = 12 100 mod 8 = 4
      12 div 8 = 1 12 mod 8 = 4 1 div 8 = 0 1 mod 8 = 1

      Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
      100 = 1448

      Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
      0.12*8 = 0.96 (целая часть )
      0.96*8 = 7.68 (целая часть 7)
      0.68*8 = 5.44 (целая часть 5)
      0.44*8 = 3.52 (целая часть 3)
      Получаем число в 8-ой системе счисления: 0753.
      0.12 = 0.7538

      2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.
      Обратный перевод из восьмеричной системы счислений в десятичную.

      Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
      144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100

      Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
      0753 = 8 -1 *0 + 8 -2 *7 + 8 -3 *5 + 8 -4 *3 = 0.119873046875 = 0.1199

      144,07538 = 100,9610
      Разница в 0,0001 (100,12 — 100,1199) объясняется погрешностью округлений при переводе в восьмеричную систему счислений. Эту погрешность можно уменьшить, если взять большее число разрядов (например, не 4, а 8).

      Ссылка на основную публикацию
      Ошибка launcher на андроид что делать
      Launcher 3 произошла ошибка на Андроид, что делать? Launcher 3 - пользовательская оболочка, которая довольно часто встречается на Android-устройствах. У...
      Определить место нахождения сим карты
      Определите местоположение мобильного устройства без помощи оператора, воспользовавшись нашим сервисом геолокации, и узнайте, где находится человек, которого вы ищите. Система...
      Определить номер откуда звонил
      На данной странице можно определить сотового оператора и регион (или город и страну) по любому номеру телефона в России или...
      Ошибка kernel mode driver
      Ваш IT помощник Ошибка «Видеодрайвер NVIDIA Windows Kernel Mode Driver перестал отвечать» очень распространена среди любителей поиграть в компьютерные игры...
      Adblock detector