Как сделать калькулятор из бумаги

Как сделать калькулятор из бумаги

Калькулятор рассчитывает развертку (выкройку) на плоскости прямого кругового конуса и усеченного прямого кругового конуса.

Калькулятор рассчитывает параметры развертки прямого кругового конуса на плоскости. Картинка ниже иллюстрирует задачу.

Про конус нам известен радиус основания и высота конуса (или высота усеченного конуса). Для описания развертки нам надо найти радиус внешней дуги, радиус внутренней дуги (если конус усеченный), длину образующей и центральный угол.

Длину образующей можно посчитать по теореме Пифагора:
,
при этом для полного конуса r1 просто обращается в ноль.

Радиус внутренней дуги можно найти из подобия треугольников:
,
опять же, для полного конуса она равна нулю.

Соответственно, радиус внешней дуги:
,
для полного конуса он совпадает с L.

В данной статье я расскажу об основах цифровой схемотехники. Мы рассмотрим базовые логические элементы, работающие на основе транзисторов и соберём свой собственный калькулятор!

Важно понимать, что любое электронное устройство, типа калькулятора, компьютера или телефона, выполняет одни и те же функции (математические вычисления и работа с памятью). Получается, что и устройство всех электронных приборов очень похожее.

Мы рассмотрим один из самых простых примеров такого вычислительного устройства — калькулятор. Нашей задачей будет создать машину, которая сможет складывать два положительных числа.

А начнем мы с самого важного.

Булева логика — это очень простая штука, знакомая практически всем. Её хорошее понимание нужно для того, чтобы однозначно и ясно понимать алгоритм построения компьютера.
Начнём с главного определения:
Высказыванием называется любое утверждение, для которого можно сказать истинно оно или ложно.
Примеры:
Высказывание (A) гласит, что (3 — 2 = 1). Очевидно, что (A) верно.
Высказывание (B) гласит, что (3 — 2 = 2). Понятно, что (B) не верно.

Высказывания можно комбинировать.
Самые важные и часто используемые комбинации — это операция "ИЛИ", операция "И" и операция "НЕ".
Для них я приведу так называемые таблицы истинности.

Таблица истинности нужна для того, чтобы определить истинность операции при разных значениях параметров:

Булева логика очень удобна в схемотехнике: истина — напряжение высокое, ложь — низкое.
Высокому напряжению сопоставляют (1), низкому — (0).
Помимо высказываний, мы можем работать с двоичными числами, ведь последовательности из ноликов и единичек можно сопоставить последовательность высоких и низких напряжений:

Почему для того, чтобы суммировать нужны логические операции (вентили)? Всё дело в том, что логические операции — это очень просто и удобно, ведь они позволяют делать проверки и в зависимости от результата выполнять разные действия. Это очень похоже на условные операторы в программировании.

Двоичные числа складываются по тем же правилам, что и десятичные.
При сложении нужно разместить одно число под другим и складывать цифры поразрядно:

Для сложения двух двоичных чисел нужно несколько раз сложить цифры из одинаковых разрядов. Разберёмся с тем, как это сделать с помощью логических элементов.
Сумма двух цифр равна единице, если одна из них равна единице. В случае, когда обе цифры равны нулю или единице сумма будет нулевая:

Легко проверить, что следующая схема из логических элементов как раз соответствует этой таблице истинности:

Действительно, сумма двух цифр равна единице, если одна из них равна единице, а другая нулю. В случае, когда обе цифры равны нулю или единице сумма будет нулевая (возможно 4 варианта):

Читайте также:  Вега 120 проигрыватель винила

Но это не полный сумматор, ведь в нашей схеме нужно учесть то, что если две цифры равны единице, то выполняется перенос единицы в следующий разряд:

Сейчас лучше, но в завершение нужно учесть перенос единицы из предыдущего разряда.

Схема получилась достаточно громоздкая, но пугаться её не стоит, ведь происходит следующее: мы результат сложения (A) и (B) складываем с тем, что было перенесено из предыдущего разряда. То есть мы просто дублируем схему сложения:

Единица для переноса в следующий разряд получается либо если (A) и (B) равны единице, либо если сумма (A+B) с единицей из предыдущего разряда равна единице.
Все возможные комбинации:

Теперь мы умеем складывать цифры поразрядно, учитывая переносы в следующий разряд:

Комбинируя несколько таких сумматоров мы получим калькулятор. Сумматоры нужно подключить так, чтобы перенос в следующий разряд предыдущего был соединён с переносом из предыдущего разряда следующего:

На рисунке показан 4-x битный сумматор, но наращивая схему можно легко увеличить количество бит.
Осталось решить последнюю проблему — собрать логические элементы.

Мы будем конструировать логические операции с помощью транзистора — радиоэлектронного компонента из полупроводникового материала, обычно с тремя выводами, способного от входного сигнала управлять током в выходной цепи.
В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем:

Почему для построения операций удобно использовать транзистор? Дело в том, что транзистор — единственный простой способ собрать логический элемент (А значит и любое вычислительное устройство).

Начнём с операции отрицания (НЕ).

Если на входе единица, то транзистор открыт и ток идет от питания к земле по пути наименьшего сопротивления. Чтобы на выходе было большое сопротивление нужен резистор на входе следующего элемента. У нас они будут на (10 kOm). Резистор на (1 kOm) нужен для того, чтобы не происходило короткого замыкания. На выходе получаем ноль.
Если на входе ноль, но транзистор заперт и ток от питания идёт на выход. То есть на выходе единица.
Получилось как раз то, что нужно.

Для построения операции "И" нужно поставить два транзистора последовательно. Таким образом элемент сможет пропускать ток только при условии, что оба транзистора открыты:

Для построения операции "ИЛИ" нужно поставить два транзистора параллельно. Таким образом элемент сможет пропускать ток, если один из транзисторов (или оба) открыт:

Сейчас мы научились собирать все нужные для калькулятора логические элементы с помощью транзистора. В следующей части я использую всю теорию, данную здесь, и соберу полноценный калькулятор!

На эту тему на моём YouTube канале есть видеоролик, посвященный этой теме, советую подписаться и узнавать о таких масштабных проектах первым 🙂

Друзья! Я очень благодарен вам за то, что вы интересуетесь моими работами, ведь каждый пост на сайте даётся очень непросто. Я буду рад любому отклику и поддержке с вашей стороны.

Если у вас остались вопросы или пожелания, то вы можете оставить комментарий (регистрироваться не нужно)

Крутяк, продолжай в том же духе!

Дата: 22-07-2019 в 00:58

Дата: 01-08-2019 в 16:38

Дата: 14-08-2019 в 00:20

А как соеденять суматоры я не понял
———————————-
Нужно подключить их так, чтобы перенос в следующий разряд предыдущего сумматора был соединён с переносом из предыдущего разряда следующего сумматора 🙂

Читайте также:  Бокс под жесткий диск

Дата: 14-08-2019 в 00:48

Полезная вещь для молодых ребят.

Дата: 22-08-2019 в 19:48

Подписался на канал только от этого видеоролика, не смотря другие понял, что канал надо поддержать.
А ещё хотелось бы получить возможность посмотреть на схему из этого видео. К примеру я не знаю, как сделать исключающее или. А по схеме я тоже самого собрать сумматор.
——————————————————
Спасибо за поддержку Дата: 03-11-2019 в 05:15

Дата: 26-01-2020 в 18:08

Мои курсовые | 30.11.2019: Выложил мои курсовые в открытый доступ. Теперь они отображаются в колонке слева под новостями.

Для будущих авторов | 12.10.18: Если вы хотите стать автором статей на сайте и получить подтвержденный аккаунт, то обращайтесь на почту! support@ilinblog.ru

Обновления | 21.08.18: Добавлена возможность комментировать статьи. Сайт адаптирован под мобильные устройства.

Обновления | 19.01.18: Добавлена возможность добавления математических формул в статьи посредством языка latex. Пример использования тут. Также добавлена возможность редактирования статей.

Информация о пользователях | 28.10.17: Расширена функциональность страницы пользователей, теперь можно добавить статус и личную информацию.


Внешний вид картонного четырёхбитного калькулятора из картона. Хорошо видны полусумматор вверху и три сумматора в средней и нижней части калькулятора

Давным-давно, до изобретения электроники, люди изготавливали механические компьютеры из подручных материалов. Самым известным и сложным примером такой машины является антикитерский механизм — сложнейшее устройство из не менее чем 30 шестерёнок использовалось для расчёта движения небесных тел и позволяло узнать дату 42 астрономических событий.

В наше время механические компьютеры (калькуляторы) — скорее предмет развлечения гиков и повод устроить забавное шоу. Например, как компьютер из 10 000 костяшек домино, который складывает произвольные четырёхзначные бинарные числа и выдаёт пятизначную двухбитную сумму (математическая теория этого калькулятора и архитектура). Такие перфомансы позволяют детям лучше понять, как работают битовые логические операции в программировании, как устроены логические вентили. Да и вообще сделать маленький компьютер своими руками из подручных материалов очень интересно, тем более если вы делаете это вместе с ребёнком.


Логическая операция AND в компьютере из 10 000 костяшек домино

Для изготовления механического калькулятора отлично подходит конструктор Lego. На YouTube можно найти немало примеров таких калькуляторов.

Калькулятор из компьютера Lego

Вдохновлённый примером компьютера из домино и механических калькуляторов из конструктора Lego, программист C++ под ником lapinozz вместе со своими младшими сестричками решил соорудить в домашних условиях нечто подобное для школьного научного проекта одной из сестёр. Он задумал и реализовал полностью функциональный четырёхбитный калькулятор LOGIC (Logic cardbOard Gates Inpredictable Calculator). Для изготовления этой вычислительной машины не требуется ничего кроме картона и клея, а работает она не на электричестве, а на шариках и земной гравитации. Калькулятор умеет складывать числа от 0 до 15 с максимальной суммой 30.

В отличие от костяшек доминов и кубиков Lego, в производстве этого калькулятора не использовались никакие фабричные компоненты. Все элементы калькулятора склеены из картона с нуля, что хорошо понятно по фотографиям устройства. В этом смысле данное устройство можно считать уникальным.

Наглядное представление, как складывать бинарные числа. Обучение школьника навыкам перевода из десятичной в двоичную систему счисления и обратно. Изучение битовых логических операций и основных логических схем.

Читайте также:  Для сервера терминалов достигнуто максимальное число подключений

Как можно рассмотреть на фотографии калькулятора, в верхней части располагается зона для ввода данных. После прохождения всех логических операций шарики показывают результат операции внизу.

Ввод данных осуществляется шариками. Шарик есть — 1, шарика нет — 0. Бит справа — это наименьший бит числа. Перед началом работы некоторые части калькулятора следует привести в исходное положение. После указания исходных значений отодвигается полоска картона, которая удерживает шарики в исходном положении — и начинается процесс сложения.

Например, так выглядит исходное положение шариков для операции 7+5 (0111 + 0101).

Логические операции картонного калькулятора осуществляется схожим образом, как и в вышеупомянутом компьютере из домино.

Схематически логические вентили для всех логических операций показаны на схеме.

То есть логический вентиль «И» (AND) означает, что при поступлении 0 шариков на входе получается 0 на выходе. При поступлении 1 шарика на входе получается 0 на выходе. При поступлении 2 шариков на входе получается 1 на выходе.

1 на входе, 0 на выходе

2 на входе, 1 на выходе

Логический вентиль XOR сделать немного сложнее. В этом случае если поступает один шарик, он должен пройти. А если поступает два шарика, то они должны аннулировать друг друга, то есть на выходе будет 0. Автор показывает, как это делать, через вертикально висящий кусочек картона с узким горлышком. Если два шарика приходят одновременно, то они блокируют друг друга — и таким образом эффективно реализуют логическую операцию XOR.

Логический вентиль XOR

Чтобы оптимизировать систему и не городить массу логических вентилей AND и XOR, автор реализовал полусумматор — комбинационную логическую схему, имеющую два входа и два выхода. Полусумматор позволяет вычислять сумму A + B, при этом результатом будут два бита S и C, где S — это бит суммы по модулю 2, а C — бит переноса. В нашей картонной конструкции это означает, что если на входе у нас 1 шарик, то он попадает на выход C, а если на входе 2 шарика, то 1 шарик попадает на выход S, а второй никуда не попадает.

Программист придумал довольно простую и эффективную схему для полусумматора. В ней 1 шарик на входе спокойно продолжает свой путь, переворачивая барьер, и проходя в отверстие C. Но если поступают два шарика, то второй шарик уже не может пройти через барьер, перевёрнутый первым шариком — и проваливается в отверстие, прибивая новый путь S. Это и есть полусумматор.

Один шарик на входе полусумматора

Два шарика на входе полусумматора

Наконец, настоящим шедевром является сумматор. Обычно его делают из двух полусумматоров и логического вентиля «ИЛИ», но автор реализовал другую конструкцию, которая фактически является небольшой модификацией полусумматора.

Один шарик на входе — один шарик по пути 1

Два шарика на входе — один шарик по пути 2

Три шарика на входе — один шарик по пути 1, а другой по пути 2

Весь калькулятор целиком состоит из одного полусумматора и трёх сумматоров.

Калькулятор выдаёт корректный результат вычислений в случае, если шарики падают с правильной скоростью, не слишком быстро и не слишком медленно, и не отскакивают друг от друга. Сама логика безупречна, но на практике калькулятор иногда глючит.

Ссылка на основную публикацию
Как сбросить настройки через bios
На заре появления компьютерной техники большинство пользователей с опаской относились к такому техническому новшеству. В случае возникновения проблем всегда обращались...
Как привязать устройство к учетной записи microsoft
С выходом Юбилейного обновления для Windows 10 Microsoft представила много изменений и функций, включая способ упростить процесс активации системы. Хотя...
Как проверить гарнитуру на компьютере
Когда вы обнаруживаете что микрофон или наушники при разговоре не работают это вызывает раздражение и у вас и человека, с...
Как сбросить пароль dir 320
Автор: Мастер · Опубликовано 28.05.2012 · Обновлено 23.02.2019 Если необходимо взломать пароль д линк 320 (а также моделей д-линк 300,...
Adblock detector