Характеристическое свойство множества это

Характеристическое свойство множества это

Всякое свойство можно рассматривать как принадлежность его некоторым предметам.

Например, свойством «быть красным» обладают некоторые цве­ты, ягоды, автомашины и другие предметы. Свойством «быть круг­лым» обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др.

Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что мно­жество характеризуется данным свойством, или множество задано указанием характеристического свойства.

Под характеристическим свойством множества понимают такое свойство, которым обладают все предметы, принадлежащие этому множеству (элементы этого множества), и не обладает ни один предмет, не принадлежащий ему (не являющийся его элементом).

Иногда свойство отождествляется с множеством предметов, характеризуемым этим свойством. Говоря «круглое», мы одноврег менно мыслим о множестве всех круглых предметов.

Если некоторое множество А задано указанием характеристиче­ского свойства Р, то это записывается следующим образом:

и читается так: «А — множество всех х таких, что х обладает свой­ством Р», или, короче, «Л — множество всех х, обладающих свой­ством Р». Когда говорят: «множество всех предметов, обладающих свойством Р», имеются в виду те и. только те предметы, которые обладают этим свойством.

Таким образом, если множество Л задано характеристическим свойством Р, то это означает, что оно состоит из всех предметов, обладающих этим свойством, и только из них. Если какой-нибудь предмет а обладает свойством Р, то он принадлежит множеству Л и, наоборот, если предмет а принадлежит множеству Л, то он

обладает свойством Р.

Предложение «предмет а принадлежит множеству Л», или «пред-мет а — элемент множества Л», обозначается кратко «а^А». Предложение «предмет а обладает свойством Р» — «Р (а)». Эти два предложения р а в н о с и л ь н ы, т. е. выражают одну и ту же мысль в разной форме, первое — на языке множеств, второе — на языке свойств. Высказывания, выражаемые этими двумя предложениями, одновременно истинны или ложны: истинны, если предмет а дей­ствительно принадлежит множеству Л (обладает свойством Р), ложны в противном случае. Для обозначения равносильности двух предложений применяется знак о.

Читайте также:  Отправить личным сообщением ваш комментарий

Таким образом, если А = <хР <х), то пишут: а^АоР (а). Например, если А — множество детей, живущих на Ленинском проспекте, то предложения «Саша живет на Ленинском проспекте» и «Саша принадлежит множеству детей, живущих на Ленинском проспекте» (хотя так обычно не говорят) равносильны. Они выра­жают истинные высказывания, если Саша, о котором идет речь в них, действительно живет на Ленинском проспекте, и ложные высказы­вания в противном случае.

Предложение Р (х), т. е. «* обладает свойством Р>, например

Например, предложения 2 + 2 = 4, 2 + 2 = 5, 3

Дата добавления: 2015-07-10 ; просмотров: 3405 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Способы задания множеств

Понятие множества мы используем без определения. Но как узнать, является та или иная совокупность множеством или не является?

Считают, что множество определяется своими элементами, т.е. множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит.

Множество можно задать, перечислив все его элементы. Например, если мы скажем, что множество А состоит из чисел 3, 4, 5, и 6, то мы задали это множество, поскольку все его элементы окажутся перечисленными. При этом возможна запись, в которой перечисляемые элементы заключаются в фигурные скобки: А = <3, 4, 5, 6>.

Однако если множество бесконечно, то его элементы перечислить нельзя. Трудно задать таким способом и конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множества: указывают характеристическое свойство его элементов.

Характеристическое свойство– это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит.

Рассмотрим, например, множество А двузначных чисел: свойство, которым обладает каждый элемент данного множества, – «быть двузначным числом». Это характеристическое свойство дает возможность решать вопрос о том, принадлежит какой-либо объект множеству А или не принадлежит. Так, число 45 содержится в множестве А, поскольку оно двузначное, а число 145 множеству А не принадлежит, так как оно не является двузначным.

Читайте также:  Сбой связи мегафон сегодня

Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными соседними сторонами и как множество ромбов с прямым углом.

В тех случаях, когда характеристическое свойство элементов множества можно представить в символической форме, возможна соответствующая запись множества. Например, множество А натуральных чисел, меньших 7, можно задать так: А = <х| х Nи х

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10553 — | 7758 — или читать все.

Множества бывают конечными и бесконечными. Например, множество всех школ города конечно, а множество вещественных чисел бесконечно.

Конечные множества можно задать перечислением элементов. Например, множество учеников класса записать в журнале. С бесконечными множествами так сделать уже нельзя.

Однако, чтобы задать множество, не обязательно перечислять его элементы. Можно указать свойство, на основе которого элементы объединены во множество. Так можно задавать как бесконечные, так и конечные множества. Признак, на основе которого элементы объединяются во множество, называется характеристическим свойством множества.

Общая формула записи множества в таком случае выглядит так:

Это значит, что множество A состоит из тех элементов x, которые обладают свойством P. Примеры:

Здесь множество C состоит из целых чисел от 1 до 10.

Ссылка на основную публикацию
Adblock detector