Формула периметра треугольника через высоту

Формула периметра треугольника через высоту

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Формулы площади треугольника

Площадь геометрической фигуры — часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади выражается числом заключающихся в него квадратных единиц.

S — площадь треугольника

a, b — длины 2-х сторон треугольника

С — угол между сторонами a и b

S — площадь треугольника

a — длина стороны треугольника

h — длина высоты, опущенной на сторону a

S — площадь треугольника

a, b, c — длины 3-х сторон треугольника

p — полупериметр треугольника

S — площадь треугольника

r — радиус вписанной окружности

p — полупериметр треугольника

S — площадь треугольника

a, b, c — длины 3-х сторон треугольника

R — радиус описанной окружности

Формула периметра треугольника

Периметр геометрической фигуры — суммарная длина границ плоской геометрической фигуры. Периметр имеет ту же размерность величин, что и длина.

1) Периметр треугольника равен сумме 3-ех его сторон (a, b, c).

P — периметр треугольника

a, b, c — длины сторон треугольника

Периметр произвольного треугольника ABC (рис. 1), длины сторон которого соответственно равны AB = c , BC = a , AC = b равен сумме его сторон a + b + c

Периметр произвольного треугольника вычисляется по формуле:

где a,b,c – стороны произвольного треугольника.

Основные понятия, справедливые для треугольников

  • Сумма углов треугольника равна 180° .
  • Высота – это отрезок перпендикуляра, опущенного из вершины на противоположную сторону.
  • Центр описанной окружности лежит на пересечении медиатрис.
  • Медиатриса – это перпендикулярна прямая, проходящая через середину стороны.
  • Центр вписанной окружности лежит на пересечении биссектрис углов.
  • Биссектриса угла делит угол на две равные части.
  • Медиана – это отрезок, соединяющий вершину с серединой противоположной стороны.
  • Медианы пересекаются в центре тяжести, который делит каждую медиану в отношение 2:1.
Читайте также:  Как починить дверцу микроволновки

Не можешь написать работу сам?

Доверь её нашим специалистам

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

О сайте

На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.

Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.

calcsbox.com

На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.

© 2020 Все калькуляторы online

Копирование материалов запрещено

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Читайте также:  Настройка переадресации на iphone

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Ссылка на основную публикацию
Adblock detector