Формула длины стороны треугольника по координатам

Формула длины стороны треугольника по координатам

Ответ

Проверено экспертом

1)периметр треугольника равен AB + BC + AC. Нам надо найти длину каждой стороны по координатам их концов. Длина отрезка по координатам его концов рассчитывается по формуле

d = √((x2-x1)²+(y2-y1)²), где d — расчитываемый отрезок, x1,x2 — абсциссы начала и конца отрезка, y1,y2 — ординаты начала и конца отрезка.

Подставляя в эту формулу абсциисы и ординаты точек из условия, последовательно нахожу каждую сторону:

Тогда периметр равен √5 + √17 + √10

2)Далее, найду медиану AM. Можно пойти разными путями, но найду её длину методом координат.

Мы знаем, что в этом случае M — середина BC. Нам надо найти координаты точки M, иначе говоря, нам надо найти координаты середины отрезка. Далее, координаты точки A нам известны, значит, можно под первую формулу подогнать. Итак, как же вычислить координаты середины отрезка? Это можно сделать по формуле

x = (x1+x2)/2; y = (y1+y2)/2, где x,y — координаты середины отрезка, x1,x2 — абсциссы концов отрезка, y1,y2 — ординаты концов отрезка. Подставляем исходные координаты в формулу и получаем

x = (3-1)/2 = 2/2 = 1; y = (3+4)/2 = 7/2 = 3.5

Значит, M(1;3.5), A(2;5)

Теперь найдём длину AM по нашей старой формуле:

AM = √(1-2)²+(3.5 — 5)² = √1+2.25 = √3.25

3)Теперь вычислю углы треугольника. Давайте подумаем, как их найти. Я вижу, что нам даны три стороны треугольника(точнее, мы их нашли). Так что, вполне вероятно, что здесь надо воспользоваться теоремой косинусов.(квадрат одной стороны треугольника равен сумме квадратов двух других сторон без их удвоенного произведения на косинус угла между ними). математически её можно записать так:

Решение:
Для нахождения длин сторон треугольника воспользуемся формулой нахождения расстояния между двумя данными точками

где (x1,y1) и (x2, y2) — это координаты начала и конца отрезка.

Читайте также:  Что за приложение яндекс лаунчер

Даны координаты вершин треугольника .

1) Вычислить длину стороны .

2) Составить уравнение линии .

3) Составить уравнение высоты, проведенной из вершины А, и найти ее длину.

4) Найти точку пересечения медиан.

5) Найти косинус внутреннего угла при вершине В.

6) Найти координаты точки М, расположенной симметрично точке А, относительно прямой ВС.

А

1. Длина стороны ВС равна модулю вектора .

; .

2. Уравнение прямой ВС: ; ; .

3. Уравнение высоты АК запишем как уравнение прямой, проходящей через точку перпендикулярно вектору :

. Длину высоты АК можно найти как расстояние от точки А до прямой ВС: .

4. Найдем координаты точки N – середины стороны ВС:

; ; .

Точка пересечения медиан О делит каждую медиану на отрезки в отношении .

Используем формулы деления отрезка в данном отношении :

.

5. Косинус угла при вершине В найдем как косинус угла между векторами и ;

.

6. Точка М, симметричная точке А относительно прямой ВС, расположена на прямой АК, перпендикулярной к прямой ВС, на таком же расстоянии от прямой, как и точка А. Координаты точки К найдем как решения системы Систему решим по формулам Крамера:

.

Точка К является серединой отрезка АМ.

.

Контрольные варианты к задаче 2

Даны координаты вершин треугольника АВС. Требуется:

1) вычислить длину стороны ВС;

2) составить уравнение линии ВС;

3) составить уравнение высоты, проведенной из вершины А;

4) вычислить длину высоты, проведенной из вершины А;

5) найти точку пересечения медиан;

6) вычислить внутренний угол при вершине В;

7) найти координаты точки М, расположенной симметрично точке А относительно прямой ВС.

1. . 2. .
3. . 4. .
5. . 6. .
7. . 8. .
9. . 10. .
11. . 12. .
13. . 14. .
15. . 16. .
17. . 18. .
19. . 20. .
21. . 22. .
23. . 24. .
25. . 26. .
27. . 28. .
29. . 30. .
Читайте также:  Как изменить цвет клавиатуры самсунг

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8854 — | 7663 — или читать все.

Ссылка на основную публикацию
Adblock detector