Что такое одз уравнения

Что такое одз уравнения

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень. "
И для тех, кто "очень даже. " )

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения. Или их ещё называют гораздо солиднее – дробные рациональные уравнения. Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе. Хотя бы в одном. Например:

Напомню, если в знаменателях только числа, это линейные уравнения.

Как решать дробные уравнения? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2). Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2)! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2), а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2.

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2). А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Классическое квадратное уравнение. Но минус впереди – нехорош. От него можно всегда избавиться, умножением или делением на -1. Но если присмотреться к примеру, можно заметить, что лучше всего это уравнение разделить на -2! Одним махом и минус исчезнет, и коэффициенты посимпатичнее станут! Делим на -2. В левой части – почленно, а в правой – просто ноль делим на -2, ноль и получим:

Решаем через дискриминант и проверяем по теореме Виета. Получаем х = 1 и х = 3. Два корня.

Как видим, в первом случае уравнение после преобразования стало линейным, а здесь – квадратным. Бывает так, что после избавления от дробей, все иксы сокращаются. Остаётся что-нибудь, типа 5=5. Это означает, что икс может быть любым. Каким бы он не был, всё равно сократится. И получится чистая правда, 5=5. Но, после избавления от дробей, может получиться и совсем неправда, типа 2=7. А это означает, что решений нет! При любом иксе получается неправда.

Осознали главный способ решения дробных уравнений? Он прост и логичен. Мы меняем исходное выражение так, чтобы исчезло всё то, что нам не нравится. Или мешает. В данном случае это – дроби. Точно так же мы будем поступать и со всякими сложными примерами с логарифмами, синусами и прочими ужасами. Мы всегда будем от всего этого избавляться.

Однако менять исходное выражение в нужную нам сторону надо по правилам, да… Освоение которых и есть подготовка к ЕГЭ по математике. Вот и осваиваем.

Сейчас мы с вами научимся обходить одну из главных засад на ЕГЭ! Но для начала посмотрим, попадаете вы в неё, или нет?

Разберём простой пример:

Дело уже знакомое, умножаем обе части на (х – 2), получаем:

Напоминаю, со скобками (х – 2) работаем как с одним, цельным выражением!

Здесь я уже не писал единичку в знаменателях, несолидно… И скобки в знаменателях рисовать не стал, там кроме х – 2 ничего нет, можно и не рисовать. Сокращаем:

Раскрываем скобки, переносим всё влево, приводим подобные:

Решаем, проверяем, получаем два корня. х = 2 и х = 3. Отлично.

Предположим в задании сказано записать корень, или их сумму, если корней больше одного. Что писать будем?

Если решите, что ответ 5, – вы попали в засаду. И задание вам не засчитают. Зря трудились… Правильный ответ 3.

В чём дело?! А вы попробуйте проверку сделать. Подставить значения неизвестного в исходный пример. И если при х = 3 у нас всё чудненько срастётся, получим 9 = 9, то при х = 2 получится деление на ноль! Чего делать нельзя категорически. Значит х = 2 решением не является, и в ответе никак не учитывается. Это так называемый посторонний или лишний корень. Мы его просто отбрасываем. Окончательный корень один. х = 3.

Как так?! – слышу возмущённые возгласы. Нас учили, что уравнение можно умножать на выражение! Это тождественное преобразование!

Да, тождественное. При маленьком условии – выражение, на которое умножаем (делим) – отлично от нуля. А х – 2 при х = 2 равно нулю! Так что всё честно.

И что теперь делать?! Не умножать на выражение? Каждый раз проверку делать? Опять непонятно!

Спокойно! Без паники!

В этой тяжелой ситуации нас спасут три магических буквы. Я знаю, о чем вы подумали. Правильно! Это ОДЗ. Область Допустимых Значений.

ОДЗ. Область Допустимых Значений.

Это те значения икса, которые могут быть в принципе. Скажем, в уравнении:

мы не знаем пока, чему равен икс. Мы пока уравнение не решили. Но уже твёрдо знаем, что икс не может равняться нулю ни при каких обстоятельствах! На ноль делить нельзя! На любое другое число – целое, дробное, отрицательное – пожалуйста, а на ноль – ни в коем разе! Иначе исходное выражение становится бессмыслицей. Это означает, что ОДЗ в этом примере: х – любое, кроме нуля. Уловили?

Читайте также:  Картинка для проверки принтера эпсон

Как записывать ОДЗ, как вообще с этим работать?

Очень просто. Всегда рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Или можно наоборот: найти запретные значения х, при которых исходный пример теряет всякий смысл, и исключить их из ОДЗ.

Я специально акцентирую внимание на словах исходный пример. Это важно. Преобразование может изменить ОДЗ и, соответственно, ответ.

Далее мы спокойно решаем уравнение, находим корни. И проверяем их на соответствие ОДЗ. Те решения или корни, которые не входят в ОДЗ – безжалостно выбрасываются.

А как искать это самое ОДЗ? Тоже просто. Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия. Таких запретных действий в математике очень мало. Но и их не все помнят… Нельзя делить на ноль. Это актуально в этой теме. Есть ещё запреты в корнях чётной степени и в логарифмических уравнениях – это мы рассмотрим в соответствующих темах. Всё. Когда мы нашли опасные места, вычисляем иксы, которые приведут к бессмыслице. И исключаем их из ОДЗ.

Важно! Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных иксов. Это сложно выглядит в разъяснениях, но практически – очень легко. До удивления. Смотрите сами. Возьмём предыдущий пример:

Сразу замечаем, что в примере есть операция деления на х – 2. Вот и пишем:

Вот и всё. Соломки подстелили. Теперь мы можем умножать всё уравнение на (х – 2). Это по-прежнему будет не совсем тождественное преобразование, но все вредные последствия от нарушения тождественности мы исключим по ОДЗ.

А как же первые два уравнения? Там что, нет ОДЗ? Есть конечно. Есть деление на неизвестное – есть ОДЗ. В примере:

Я специально в этих примерах ничего не сказал про ОДЗ. Чтобы вас не спугнуть… В этих двух примерах ОДЗ никак не сказалось на ответах. Такое бывает. Но в заданиях ЕГЭ ОДЗ, как правило, влияет на ответ! ОДЗ писать надо. Не для проверяющих, для себя. ОДЗ не пишут, если очевидно, что икс – любое число. Как, например, в линейных уравнениях.

Мы с ОДЗ дружить будем. Во всех темах, где потребуется, будем ОДЗ вспоминать. Чтобы не попасть в засаду.

1. Перед решением внимательно исследуем пример. Ищем опасные места, определяем ОДЗ.

2. Определяем множитель, который позволит полностью избавиться от дробей. Умножаем на него уравнение.

3. Решаем получившееся уравнение, находим корни. Проверяем их на соответствие ОДЗ. Те корни, что не входят в ОДЗ, из ответа исключаем.

А сейчас, вооружившись глубокими познаниями и практическими советами, решаем примеры.

Посказка: в каждом уравнении только одно решение. Один корень. Ответы в традиционном беспорядке:

Что, у вас иксов поболее будет? Бывает. Про ОДЗ не забыли, часом? Кое-какие корни выкидывать надо. ОДЗ учли, а всё равно не получается? Да-а-а. Проблемка. Такие уравнения надо уметь решать, слишком они популярны во всех темах математики. Но не падайте духом!)

В Разделе 555 дан простой алгоритм решения любых дробных уравнений. Четыре несложных шага и дело сделано. Я там все эти примеры прогнал через алгоритм — и всё получилось!) А подробная расписка каждого элемента решения позволит вам найти свои ошибки.

Ну вот, основы дробных уравнений освоили. Это оч-ч-чень нам пригодится в теме про задачи!

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое ОДЗ?

Это область допустимых значений, то есть это все значения переменной, при которых выражение имеет смысл.

Например, если перед тобой уравнение , то ни , ни не могут быть отрицательными:

Часто в задачах бывает очень важно учесть ОДЗ. То есть некоторые из решений на самом деле решениями не являются.

Давай разберем пример, наглядно показывающий что такое ОДЗ:

Все очень просто, если ты уже освоил тему «Иррациональные уравнения». Возводим левую и правую части уравнения в квадрат:

Теперь решаем квадратное уравнение. Я воспользуюсь теоремой Виета (если забыл что это такое — посмотри тему «Квадратные уравнения»). Получаем корни:

Вроде все? А давай-ка теперь сделаем проверку – подставим полученные значения в начальное уравнение:

– неверно! А все почему?

Да потому, что мы не учли ОДЗ: ведь по определению квадратный корень из любого числа не может быть отрицательным. Значит, глядя на уравнение мы должны сразу же написать:

Если помнишь тему «Иррациональные уравнения», ты сразу скажешь, что второе условие в этой системе писать необязательно. И правда, мы ведь потом возведем все в квадрат, и получится, что , а значит – автоматически неотрицательно. Итак, с помощью этих рассуждений приходим к такой области допустимых значений:

Тогда сразу становится ясно, что корень не подходит. И остается единственный ответ .

Функции, для которых важна ОДЗ

Всего мы изучаем несколько разных функций, для которых важна ОДЗ. Вот они:

Тип функции ОДЗ
Обратная зависимость .
Степенная функция (корень)
Показательная функция 0;\z>0.end
ight.">
Логарифмическая функция 0;\x
e 1;\y>0.end
ight.">
Тригонометрическая функция

Рассмотрим примеры с каждой из этих функций:

1. ОДЗ обратной зависимости

Замечаем, что в знаменателе правой части формула сокращенного умножения:

Теперь можно спокойно избавляться от одинаковых знаменателей:

Согласно ОДЗ второй корень не подходит.

Ответ: .

2. ОДЗ степенной функции

Такой пример мы уже рассматривали, поэтому реши его самостоятельно.

Ответ: .

3. ОДЗ показательной функции

Не пугайся, тут все просто:

Обе части уравнения строго положительны, поэтому делим все на правую часть:

Теперь возможны два варианта: либо основание степени равно , либо показатель равен :

(квадратное уравнение реши сам)

Теперь вспомним ОДЗ: корень – «сторонний».

Ответ: .

4. ОДЗ логарифмической функции

С учетом ОДЗ нужно отбросить отрицательный корень:

Ответ: .

5. ОДЗ тригонометрической функции

Для наглядности изображу область допустимых значений на единичной окружности в виде выколотых точек:

[frac<<<<sin >^2>x>><<cos x>> = <mathop<
m tg>
olimits> x Leftrightarrow frac<<sin x>><<cos x>> cdot sin x = <mathop<
m tg>
olimits> x Leftrightarrow <mathop<
m tg>
olimits> x cdot sin x = <mathop<
m tg>
olimits> x Leftrightarrow <mathop<
m tg>
olimits> xleft( <sin x — 1>
ight) = 0 Leftrightarrow ]

[left[ egin<mathop<
m tg>
olimits> x = 0\sin x = 1end

ight. Leftrightarrow left[ egin
x = pi n,<
m< >>n in mathbb\x = frac<pi > <2>+ 2 pi k,<
m< >>k in mathbb
end

ight.]

Читайте также:  Перепрошить айфон 4 в домашних условиях

Очевидно, что вторая группа корней не подходит по ОДЗ.

ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ. КОРОТКО О ГЛАВНОМ

ОДЗ — это область допустимых значений, то есть это все значения переменной, при которых выражение имеет смысл.

Функции, для которых важна ОДЗ:

Тип функции ОДЗ
Обратная зависимость .
Корень
Показательная функция 0;\z>0.end
ight.">
Логарифмическая функция 0;\x
e 1;\y>0.end
ight.">
Тригонометрические функции

Ответ: .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене "чашка кофе в месяц",

А также получить бессрочный доступ к учебнику "YouClever", Программе подготовки (решебнику) "100gia", неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

Каждому выражению с переменными соответствует область допустимых значений (ОДЗ) переменных, которую ОБЯЗАТЕЛЬНО нужно учитывать при работе с этим выражением. Акцент на слове «обязательно» сделан не случайно: при решении примеров и задач халатное отношение к ОДЗ может привести к получению неверных результатов.

Чтобы у нас не возникало подобных проблем, давайте внимательно изучим все, что связано с ОДЗ. Для начала узнаем, что это такое, после этого разберем на характерных примерах, как найти ОДЗ переменных для заданного выражения, а в заключение остановимся на важности учета ОДЗ при преобразовании выражений.

Навигация по странице.

Допустимые и недопустимые значения переменных

Определение области допустимых значений переменных для выражения дается через термин допустимые значения переменной. Введем это вспомогательное определение, для чего проследим, что нас приводит к нему.

На уроках математики в школе вплоть до 7 класса познаются азы работы преимущественно с числами и числовыми выражениями. А с 7 класса начинается изучение такой математической дисциплины как алгебра, и начинается оно с того, что вводится определение выражения с переменными, а также связанное с ним определение значения выражения при выбранных значениях переменных.

Последнее определение нуждается в уточнении следующего плана. Существуют выражения, значения которых при некоторых выбранных значениях переменных вычислить невозможно. Например, невозможно вычислить значение выражения 1:a при a=0 , так как делить на нуль нельзя. Это послужило причиной введения в обиход терминов «выражение, имеющее смысл при данных значениях переменных» и «выражение, не имеющее смысла при данных значениях переменных». Говорят, что

выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение

выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Вот теперь мы обладаем всеми сведениями, позволяющими дать определение допустимых и недопустимых значений переменных:

Допустимые значения переменных – это такие значения переменных, при которых выражение имеет смысл. А значения переменных, при которых выражение не имеет смысла, называют недопустимыми значениями переменных.

Здесь лишь стоит уточнить, что если выражение содержит две, три, и большее число переменных, то речь идет о парах, тройках и т.д. допустимых значений переменных. Приведем пример. Рассмотрим выражение с тремя переменными x , y и z . Тройка значений переменных x=0 , y=1 , z=2 , она же в другой записи (0, 1, 2) , является допустимой, так как при данных значениях переменных мы можем найти значение выражения: . А тройка (1, 2, 1) – недопустимая, так как при подстановке этих значений в выражение мы придем к делению на нуль: .

Определения, озвученные в этом пункте, полностью согласуются с информацией из учебников [1, с. 6; 2, с. 11-12; 3, c. 4] .

Что такое ОДЗ?

Практически у всех, так или иначе имеющих отношение к алгебре, на слуху словосочетание «область допустимых значений», также довольно часто аббревиатуру ОДЗ можно встретить в описаниях решений, но как такового определения области допустимых значений (ОДЗ) нет в основных учебниках, используемых в школе. Поэтому интересно, откуда берет начало этот термин. Ну а с позиций практики интереснее знать, какой смысл в него вкладывают.

Под областью допустимых значений (ОДЗ) понимают множество всех допустимых значений переменных для данного выражения.

Приведем пример. Допустим, дано выражение , и записано ОДЗ: (−∞, 3)∪(3, +∞) . Последнюю запись стоит понимать так: область допустимых значений переменной z для выражения есть числовое множество (−∞, 3)∪(3, +∞) .

Другой пример. Рассмотрим выражение и относящуюся к нему запись ОДЗ: x≠y , z — любое. Она означает, что ОДЗ переменных x , y и z для данного выражения – это все такие тройки значений переменных x , y и z , для которых выполняются указанные условия x≠y , z — любое.

Завершить этот пункт хочется разговором про область допустимых значений и область определения. Часто между этими терминами стирают различия. Например, говорят про область определения выражения [4, с. 87] , под которой фактически понимают ОДЗ переменных этого выражения. Также можно столкнуться с областью определения уравнения или неравенства [5, с. 204, 220; 6, с. 188, 190] , под ней подразумевают ОДЗ переменных, на которой одновременно имеют смысл обе части уравнения или неравенства. Как тут не спутать одно с другим? Давайте будем придерживаться следующего подхода: к функциям относить область определения функции, а к выражениям – ОДЗ переменных. И на загладку приведем такое утверждение: область определения функции y=f(x) совпадает с областью допустимых значений переменной x для выражения f(x) .

Как найти ОДЗ? Примеры, решения

Прежде чем обратиться к главной теме этого пункта, нужно понимать, что значит найти ОДЗ, хотя это достаточно отчетливо ясно из определения. Это значит, что надо указать множество всех допустимых значений переменных для заданного выражения. На это можно посмотреть и с другой стороны: найти ОДЗ – это значит указать условия, которые исключают те и только те значения переменных, при которых выражение не имеет смысла. Теперь можно двигаться дальше.

Заданий с формулировкой «найти ОДЗ» не так много. Однако почти постоянно приходится преобразовывать выражения, а это неявно требует нахождения области допустимых значений для ее контроля. В этом свете вопрос, как найти ОДЗ, очень злободневен.

В поисках ответа на него поразмыслим, значения каких выражений мы не можем вычислить.

  • Во-первых, мы не можем вычислить значение выражения, в котором присутствует деление на нуль (или дробь со знаменателем нуль, что по сути то же самое), так как этому действию мы не придали смысла.
  • Во-вторых, мы не можем извлечь квадратный корень из отрицательного числа, как и корень другой четной степени, о чем мы говорим когда вводили корень из числа. Здесь же заметим, что показателями корня могут быть лишь числа 2 , 3 , 4 , и так далее, значит, значения выражений с корнями, имеющими другие показатели, мы тоже не можем вычислить.
  • В-третьих, вспомним про степень числа. Если степень числа с положительным целым показателем мы определили для любого действительного числа, то степень с целым отрицательным показателем мы определили уже с ограничением: для любого действительного числа, кроме числа нуль. Степени с положительным нецелым показателем мы придали смысл лишь для неотрицательных чисел, а с отрицательным нецелым показателем – лишь для положительных чисел. А еще мы не можем вычислить нуль в степени нуль.
  • В-четвертых, обратим внимание на логарифм числа. Его мы определили так, что не придали смысла логарифму отрицательного числа и числа нуль по любому основанию, а также логарифму положительного числа по отрицательному основанию и по основанию 1 .
  • В-пятых, мы не определили тангенс чисел , а также котангенс чисел (см. статью значения тригонометрических функций).
  • В-шестых, мы не можем найти значение арксинуса и арккосинуса числа, выходящего за рамки числового промежутка [−1, 1] в силу того, что мы так определили arcsin и arccos (см. статью arcsin, arccos, arctg, arcctg: определения, примеры).
Читайте также:  Не удалось выполнить вход в xbox live

Что нам это дает? А то, что перечисленные выше моменты и нужно учитывать при поиске ОДЗ. Как это делать, станет понятно из следующих примеров.

Укажите все допустимые значения переменных для выражения x 3 +2·x·y−4 .

Возвести в куб мы можем любое число, также мы умеем умножать любые числа, как и складывать и вычитать. Поэтому, мы можем вычислить значение заданного выражения при любых значениях переменных x и y . А это значит, что выражение x 3 +2·x·y−4 имеет смысл при любых значениях входящих в него переменных. Поэтому, ОДЗ переменных x и y для этого выражения – это множество всех таких пар (x, y) , где x – любое число и y – любое число.

(x, y) , где x – любое, y — любое.

Найти ОДЗ переменной x для выражения .

Мы видим, что данное выражение содержит дробь с нулем в знаменателе. А это значит, что ни при каком значении переменной x мы не сможем вычислить значение этого выражения, так как оно будет содержать деление на нуль. Вывод: это выражение не определено ни при каких значениях переменной x . Другими словами, ОДЗ переменной x для этого выражения есть пустое множество.

Найти ОДЗ .

Здесь нас настораживает присутствие квадратного корня. Чтобы избежать появления под корнем отрицательного числа, надо для переменных x и y потребовать выполнение условия x+2·y+3≥0 . Оно и задает искомую область допустимых значений.

множество всех пар (x, y) , для которых x+2·y+3≥0 .

В более сложных случаях приходится учитывать одновременно несколько условий из приведенного выше списка. Это дает системы неравенств, задающие ОДЗ.

Определите ОДЗ переменной x для выражения .

Во-первых, выражение в знаменателе дроби не должно обращаться в нуль, это дает первое условие . Во-вторых, выражение под знаком квадратного корня должно быть неотрицательным: x+1≥0 . В-третьих, выражение под знаком логарифма должно быть положительным, это дает третье условие x 2 +3>0 . Наконец, выражение в основании логарифма должно быть положительным и отличным от единицы, так вырисовываются еще два условия x+8>0 и x+8≠1 . Таким образом, искомая ОДЗ определяется системой следующего вида . Это система неравенств с одной переменной, решив ее, записываем ОДЗ: [−1, 0)∪(0, +∞) .

Здесь лишь заметим, что во многих случаях на практике нет необходимости в решении составленных систем.

В заключении остается сказать, что такой подход используется и тогда, когда нужно найти область определения функции.

Почему важно учитывать ОДЗ при проведении преобразований?

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений. Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

  • не влиять на ОДЗ;
  • приводить к расширению ОДЗ;
  • приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x , ОДЗ переменной x для этого выражения есть множество R . Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые, в результате оно примет вид x 2 +4·x . Очевидно, ОДЗ переменной x этого выражения тоже является множество R . Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x . В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x , для которого ОДЗ есть R . Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

Осталось рассмотреть пример сужения области допустимых значений после проведения преобразований. Возьмем выражение . ОДЗ переменной x определяется неравенством (x−1)·(x−3)≥0 , для его решения подходит, например, метод интервалов, в результате имеем (−∞, 1]∪[3, +∞) . А теперь преобразуем исходное выражение к виду , воспользовавшись одним из свойств корней: корень произведения равен произведению корней. ОДЗ переменной x для этого выражения определяет система линейных неравенств , решение которой дает множество [3, +∞) . Таким образом, в результате проведенного преобразования произошло сужение ОДЗ с множества (−∞, 1]∪[3, +∞) до множества [3, +∞) .

При преобразовании выражений надо строго избегать преобразований, сужающих ОДЗ. Почему? Для пояснения приведем пример.

Допустим нам нужно вычислить значение выражения при x=−1 . Если сразу подставить вместо переменной x число −1 , то мы найдем значение . А теперь представим, что мы из каких-то соображений предварительно преобразовали исходное выражение к виду , сузив тем самым ОДЗ. Вычисляем его значение, для этого подставляем вместо переменной x число −1 , и получаем выражение , которое не имеет смысла, так как под знаком корня оказывается отрицательное число. Такой подход привел нас к проблеме, которая возникла из-за того, что 2 входит в ОДЗ переменной x для исходного выражения, но уже не попадает в «суженную» ОДЗ переменной x для выражения, полученного после преобразования.

Так что надо придерживаться таких тождественных преобразований выражения, которые не изменяют ОДЗ.

А как быть с преобразованиями выражений, при которых расширяется ОДЗ? Их можно проводить, но при этом стоит придерживаться такого взгляда: полученное в результате преобразования выражение рассматривать на ОДЗ переменных исходного выражения.

Например, сокращение алгебраической дроби на x дает дробь и приводит к расширению ОДЗ от множества (−∞ 0)∪(0, +∞) до множества R . При этом можно продолжать работать с полученной дробью , но на ОДЗ переменной x для исходного выражения, то есть, на множестве (−∞ 0)∪(0, +∞) .

Еще пример. При замене суммы логарифмов lnx+ln(x+3) логарифмом произведения ln(x·(x+3)) (см. свойства логарифмов) происходит расширение ОДЗ с (0, +∞) до (−∞, −3)∪(0, +∞) . Поэтому с полученным выражением ln(x·(x+3)) дальше стоит работать на ОДЗ переменной x исходного выражения, то есть, на множестве (0, +∞) .

Итак, на каждом шаге преобразования выражения постоянно спрашивайте себя: «Не изменяет ли это преобразование ОДЗ»? Если не изменяет, то выполняйте его. Если сужает, то откажитесь от него. А если расширяет, то выполняйте его, но оставайтесь в рамках ОДЗ переменных для исходного выражения.

Ссылка на основную публикацию
Что нужно для капельницы в домашних условиях
Капельница на дому делается при неблагоприятных условиях, когда необходимость в процедуре есть, но нет возможности, обратиться к квалифицированному медику. Совет:...
Цифровой тв тюнер dvb t2 для телевизора
К сожалению, не все старые или бюджетные телевизоры имеют встроенный тюнер для цифрового или кабельного вещания. Тюнер необходим для того,...
Цифровой телевизионный ресивер smp131hdt2
Сегодня мы познакомимся с новинкой цифровых телевизионных ресиверов, работающих в стандарте DVB-T2, от компании BBK SMP131HDT2. Компания BBK является лидером...
Что нужно для усиления сигнала интернета
Многие ценят дачную тишь да гладь именно за отсутствие всяческой связи с миром, кроме экстренной голосовой. Однако куда больше таких,...
Adblock detector