Что можно написать на питоне

Что можно написать на питоне

У вас получилось: вы закончили курсы, или дочитали книгу, которая дает вам базу для программирования в Python. Вы освоили списки, словари, классы, может даже некоторые объектно-ориентированные концепции.

И что дальше?

Python – это очень универсальный язык программирования, с плеядой пользователей во всех возможных сферах. Если вы освоили основы Python, и хотите построить на нем что-нибудь – важно понять, какой первый шаг следует сделать.

Содержание:

В данной статье мы рассмотрим несколько разных проектов, ресурсов и руководств, которые вы можете использовать для создания чего-либо в Python.

Что другие делают в Python?

Вы, наверное, думаете, что люди создают в Python в реальной жизни? Для начала, давайте быстренько пройдемся по крупным компаниям, которые используют данный язык.

Google, к примеру, использовали Python с самого начала, и сегодня он занимает место ведущих гигантов среди языков, ориентированных на серверную сторону. Гвидо ван Россум, добрый пожизненный диктатор Python (уже нет) даже работал нам на протяжении нескольких лет, наблюдая за тем, как развивается язык.

Spotify использует язык из-за его сервисов анализа данных и бэкенда. Согласно команде разработчиков, простота использования Python позволяет достичь молниеносной скорости разработки. Spotify выполняет тонны анализов, чтобы собирать рекомендации своим пользователям, так что им нужно что-нибудь, что может выполнять такую работу быстро. Python – это решение!

Что я могу делать в Python?

Начиная с веб разработки до работы с научными данными, машинным обучением, и пр., приложения Python не имеют границ. Рассмотрим несколько проектов, которые помогут вам развить ваши навыки работы с Python.

#1: Автоматизация нудных дел

Это ресурс по «практическому программированию для начинающих». Как и говорится в заголовке, с этой книгой вы можете узнать, как автоматизировать скучные процессы, такие как обновление электронных таблиц, или переименовывать файлы на компьютере. Это отличная отправная точка для тех, кто уже освоил основы Python.

У вас будет шанс попрактиковаться в том, что вы уже выучили на данный момент, создавая словари, проводя скрейпинг сайтов, работая с файлами и создавая объекты и классы. Практические приложения, встречающиеся в этой книге дадут вам реальное представление о том, что вы можете делать незамедлительно.

#2: Держать руку на курсе Биткоина

Похоже, что сегодня о Bitcoin Python говорят все. С тех пор, как в декабре 2017, когда курс почти поднялся до отметки в 20 000 долларов, криптовалюта стала на слуху у миллионов. Цена продолжает колебаться, но многие считают инвестиции целесообразными.

Если вы хотите обогатиться на виртуальном золоте и хотите знать, когда делать следующий шаг, то вам нужно иметь представление о лучших ценах на bitcoin. Это руководство может научить вас, как использовать навыки работы в Python, чтобы построить собственную систему уведомлений о курсе Bitcoin.

Основа этого проекта – это создание IFTTT (if this, then that) апплетов. Вы узнаете, как использовать библиотеку requests для отправки запросов HTTP и как использовать webhook для подключения вашего приложения к внешним сервисам.

Этот проект – отличная отправная точка для начинающего питониста, который заинтересован в крипте. Сервис, который вы построите с данным руководством может быть расширен под другие валюты, так что если вы также рассматриваете Ethereum – двери открыты!

#3: Создание калькулятора

Этот простой проект – отличный шлюз в мире GUI программирования. Создание бекенд сервисов – это важная часть развертывания, но может появиться необходимость во фронтенде, которую стоит учитывать. Создание приложений, которыми пользователи могут легко пользоваться – это первостепенная важность.

Если вам интересен UXUI дизайн, то это руководство вам понравится. Вы будете работать с модулем tkinter, стандартным пакетом графического пользовательского интерфейса, который поставляется вместе с Python.

Модуль tkinter – это обертка вокруг Tcl/Tk, комбинация скриптового языка Tcl и расширения фреймворка графического пользовательского интерфейса Tk. Если у вас есть установленный Python, то у вас уже есть готовый к использованию tkinter. Вам нужно сделать простой вызов перед началом:

После проведения установки, вы можете начать работу с постройкой своего первого GUI калькулятора в Python.
Попрактикуйтесь в использовании модуля tkinter и наблюдайте за тем, как ваше виденье материализуется на экране. После того, как вы окрепнете, вы можете начать работать с другими GUI инструментами Python. Ознакомьтесь к официальной документацией GUI программирования в Python для дополнительной информации.

#4: Майнинг данных Twitter

Благодаря интернету, и (все чаще и чаще) интернету вещей (IoT) – у нас есть доступ к огромному количеству данных, о которых не могли мечтать всего десять лет назад. Аналитика – это огромная часть любой сферы, которая связана с данными. О чем люди разговаривают? Какие шаблоны видны в их поведении?

Твиттер – отличное место, чтобы получить ответы на эти вопросы. Если вам интересен анализ данных, тогда майнинг данных в Twitter – отличный способ попробовать свои навыки в Python, чтобы ответить на вопросы об окружающем мире.

В учебном пособии по анализу Твиттера позволит вам получать данные из Твиттера и анализировать настроения пользователей в среде docker. Вы узнаете, как регистрировать приложение вместе с Твиттером, это понадобиться вам, чтобы получить доступ к потоковым API.

Вы увидите, как использовать Tweepy для фильтрации твитов, которые вы хотите вытягивать, TextBlob для подсчета настроения этих твитов, Elasticsearch для анализа содержимого этих твитов и Kibana для показа результатов. По окончанию данного руководства, вы уже будете готовы к тому, чтобы заняться другими проектами, которые используют Python для обработки текстов и распознавания речи.

#5: Создание микроблога с помощью Flask

Похоже, что у каждого сегодня есть блог, и нет ничего плохого в том, чтобы иметь собственный уютный хаб онлайн. С развитием Twitter и Instagram, микроблоги стали чрезвычайно популярными. В этом проекте Мигеля Гринерга, вы научитесь создавать собственный микроблог.

Он называется «Мега-руководство Flask», и однозначно соответствует названию. Проработав 23 главы, вы получите глубокое представление о веб-фреймворке Flask. К концу проекта, вы сможете создать полностью работающее веб приложение.
Вам не нужно знать что-либо о Flask, чтобы приступить к делу, так что это идеально для тех, у кого чешутся руки, чтобы приступить к веб разработке.

Руководство недавно было обновлено, и теперь включает в себя контент, который поможет вам стать лучшим веб разработчиком. Вы можете прочесть его бесплатно онлайн, купить экземпляр в Amazon, или пройтись с автором по онлайн курсу пошагово. После окончания курса, вы сможете перейти к Django и создавать более масштабные веб приложения.

#6: Создание блокчейна

Хотя блокчейн в основном разрабатывается как финансовая технология, его можно применять во многих других областях. Блокчейны можно применять практически во всех транзакциях: от сделок с недвижимостью, до передач медицинских отчетов.

Вы можете получить лучшее представление о том, как это работает, построив свой блокчейн! Руководство Hackernoon поможет вам реализовать блокчейн с нуля. К концу проекта, вы получите глубокое представление того, как работает эта технология транзакций.

Вы будете работать с HTTP клиентами и библиотекой requests. После установки веб-фреймворка Flask, вы сможете использовать запросы HTTP и взаимодействовать со своим блокчейном в интернете.

Помните, блокчейн – это не только для фанатов криптовалюты. Построив такой самим, вы легко найдете креативный способ реализовать эту технологию в интересующей вас области.

#7: Разбираемся с лентой Twitter

Интересует постройка веб приложений, но не хватает уверенности, чтобы начать мега-проект? Не беспокойтесь, мы кое-что подготовили для вас. С нами вы сможете научиться создавать простое веб приложение всего за несколько часов.

Боб Белдерброс делится кейсом, где он создал 40th PyBites Code Challenge, в котором участникам нужно было построить простое веб приложение для лучшей навигации по ленте новостей Daily Python Tip в Твиттере. Вы можете пройтись по результатам данного челенджа и ознакомиться с кодом.

Вместо Flask, вы будете использовать микро веб-фреймворк Bottle. Он славится тем, что является слабо зависимым решением для быстрого создания приложений. Так как он был разработан таким образом, чтобы быть легким и простым в использовании, вы сможете получить свое приложение практически мгновенно.
Вы также сможете работать с модулем Tweepy, чтобы загружать данные из API Твиттера. Вы сможете хранить данные в базе SQLAlchemy или Peewee, так что заодно получите небольшую практику в запросах SQL.

Читайте также:  Nobelic nbq 1110f ivideon

#8: Играйте в PyGames

Этот раздел для тех, кто хочет весело провести время. Python может быть использован для написания различных аркадных игр, адвенчур и пазлов, на разработку которых уйдет всего несколько дней. К классическим играм, типа пинг-понга вы сможете перейти, когда освоите новые навыки программирования.

Библиотека Pygame заметно упрощает разработку собственных игр. Он включает в себя практически все необходимое, чтобы вы могли приступить к разработке игр.

Pygame совершенно бесплатный и находится в открытом доступе. Он включает в себя библиотеки компьютерной графики и работы со звуком, которые вы можете использовать для внедрения интерактивного функционала в ваше приложение.

Вам доступны десятки игр, которые вы можете создать при помощи библиотеки. Что-бы вы не хотели придумать, чувствуйте себя комфортно и делитесь своими работами в сообществе Pygame!

#9: Выберите свое собственное приключение

Если вам больше по духу повествование, то у вас все еще масса инструментов, чтобы создать нечто крутое в Python.
Язык очень прост для написания, что делает его идеальной средой для разработки интерактивного чтива. С этим бесплатным руководством, вы сможете пошагово ознакомиться с написанием текстовых игр в Python.

Руководство подразумевает базовое понимание программирования в Python, и помогает проложить мост между тем, что вы уже знаете и неизведанными землями для построения приложения.

Если вы хотите, чтобы ваша история вышла на новый уровень, вы можете использовать движок, вроде RenPy, чтобы добавить звуки и изображения в вашу игру, создав визуальную новеллу с полным погружением. (После этого, вы можете выложить игру в Steam и посмотреть, как она расходится! Лучший способ получить отзыв о вашей работе – создать собственный релиз на мировом рынке.)

#10: Скажите “Привет, мир!” машинному обучению

Машинное обучение может быть фундаментальной областью в понимании искусственного интеллекта. Однако, в этой сфере легко запутаться, так как она постоянно развивается и меняется.
К счастью, в вашем распоряжении имеются онлайн ресурсы, которые могут помочь освоиться, перед тем как нырнуть с головой в мир под названием data science. Это руководство создано Джейсоном Браунли, и является хорошим примером введением в использование Python для машинного обучения.

Вы пройдетесь по ряду базовых алгоритмов машинного обучения, как и по библиотекам Python, которые помогут вам в составлении прогнозов.

Руководство очень простое и в нем легко ориентироваться. Вы можете окончить его всего за несколько часов. По окончанию курса, у вас будет общее представление о том, как использовать Python в науке данных.

Когда вы будете уверены в том, что можно нырять с головой, можете ознакомиться с этими руководствами, где вы сможете научиться анализировать отпечатки, создавать визуализации, распознавать речь и лица, и все это в Python!

#11: Бросаем вызов!

Если вы не уверены в том, что готовы окунаться в некоторые крупные проекты, упомянутые ранее, при этом мелкие вас не очень интересуют, вы можете думать: а чем еще можно заняться?

Кодерские задачки могут помочь вам попрактиковаться в навыках работы в Python и получить поверхностное представление обо всем спектре вещей, которые вы можете делать в Python,
Проще говоря: вам предоставят проблему, и вам нужно найти решение, в котором используется Python.

У вас будет шанс разработать решения, которые имеют смысл для вас, при этом у вас есть возможность углубиться в язык Python при помощи подсказок. Так вы получите представление о том, какие модули вам нужно импортировать, чтобы решить проблему.

Кодовые челенджы – это хороший способ освоить наибольшее количество библиотек, методов и фреймворков. Вы гарантированно найдете что-нибудь, что зацепит ваш интерес, и захотите уделять этому свободное время. Вы можете вернуться к этому списку и найти то, что зажгло в вас интерес, когда вы использовали это в одном из челенджей.

Чтобы начать, попробуйте одно из следующих, чтобы оценить свои силы:

  • Python Challenge. Более 20 доступных уровней. Создавайте простые скрипты в Python, чтобы решить уровень. По интернету есть разбросанные подсказки, но старайтесь искать решение самостоятельно!
  • PyBites Code Challenge. Включает в себя 50 задач, и количество растет! Эти задачи направлены на то, чтобы вы научились работать в Python для создания приложений, которые будут решать определенные проблемы.

Если вы предпочитаете программировать в таких задачах самостоятельно вместо пошаговых инструкций, то не будет лишним иметь под рукой вспомогательный ресурс.

Книга Python Tricks – это отличный источник информации, который поможет при работе с задачами. В книге рассматриваются малоизвестные части Python, на основании которых и формируются задачи.

Чего (скорее всего) не стоит делать в Python?

Очевидно, что Python – чрезвычайно универсальный язык, с которым вы можете делать массу вещей. Но вы не можете делать буквально всё. Фактически, есть определенные сферы, на которые Python не рассчитан.

С точки зрения интерпретируемого языка, у Python есть проблемы со взаимодействия с низкоуровневыми устройствами, такими как драйверами устройств. Например, у вас будут проблемы, если вы захотите написать операционную систему только на Python. Вам лучше связать его с С или С++ для низкоуровневых приложений.

Однако, даже это может быть проблемой не долго. В качестве подтверждения гибкости Python, есть люди, которые работают над проектами, которые расширяют юзабилити Python для низкоуровневых взаимодействий. MicroPython – это один из таких проектов, разрабатывающих низкоуровневые возможности Python.

Что если вашей идеи нет в этом списке?

Ничего страшного! Этот список вряд ли можно назвать исчерпывающим: существует огромное количество других инструментов и приложений, которые вы можете построить в Python, которые мы не рассмотрели в данной статье. Не думайте, что ваши идеи должны как-либо ограничиваться данным списком. Это просто база, с которой вы можете начать.

В этом видео вы можете почерпнуть несколько идей из других проектов, под которые Python хорошо заточен. Вы также можете ознакомиться с данным постом в блоге, автор которого подсказывает, где найти вдохновение для новых проектов Python.
Наконец, вы вольны искать и находить проекты, которые вам интересны.

Что делать дальше?

Ну, вот и все! Одиннадцать путей от новичка в Python до прожженного питониста!
Неважно, с чего вы хотите начать, вам открыты бесчисленные проспекты для разработки ваших навыков программирования. Начинайте с чего угодно! Родилась идея, которой нет в этом списке? Поделитесь в комментариях! Вы можете предложить идеальный проект для программиста-побратима.

Если вы застряли и ищете толчок в нужном направлении, поговорите об этом! Программирование не обязательно должно быть одиночным делом.

Если вы ищете способ задать вопрос и получить быстрый ответ от профессионалов – Python Форум всегда свободен. Это частное сообщество поможет вам найти контакт с теми, кто поможет вам пройти через возникшие стены, на которые вы наткнулись, работая в Pyhton.

Существует множество областей применения Python, но в некоторых он особенно хорош. Разбираемся, что же можно делать на этом ЯП.

Если вы собираетесь изучать Python или совсем недавно начали его учить, вы точно задумывались, что же можно на нем сделать. Вопрос не простой, так как этот язык используется во многих сферах.

Но можно выделить 3 самых популярных направления применения Python:

  1. веб-разработка;
  2. data science: машинное обучение, анализ данных и визуализация;
  3. автоматизация процессов.

Каждое из них заслуживает отдельного рассмотрения.

Веб-разработка

Относительно недавно в веб-разработке стали очень популярны Python-фреймворки, такие как Django и Flask. Они облегчают процесс написания на языке Python кода серверной части приложений. Это тот код, который запускается на сервере, а не на устройствах и браузерах пользователей (frontend-код). Если вы не знакомы с отличиями backend- и frontend-разработки, вам будет интересна заметка в конце статьи.

Зачем нужен веб-фреймворк?

Фреймворки позволяют легко и быстро создать базовую логику бэкенда. Она включает в себя сопоставление разных URL-адресов с частями Python-кода, работу с базами данных, создание HTML-представлений для отображения на устройствах пользователя.

Читайте также:  Что делать если не включается телефон лджи

Какой Python-фреймворк выбрать?

Django и Flask – два самых популярных веб-фреймворка, созданных для языка Python. Новичку следует выбрать один из них.

В чем разница между Django и Flask?

  • Flask обеспечивает простоту, гибкость и полный контроль над проектом. Он позволяет пользователю самостоятельно решать, как реализовывать те или иные вещи.
  • Django – это сервис типа "все включено". Из коробки в нем уже есть админ-панель, интерфейсы баз данных, ORM (объектно-реляционное отображение) и структура каталогов для ваших проектов.
  • Выбирайте Flask, если хотите получить больше опыта и возможностей для обучения. Или в том случае, если вам нужен максимальный контроль над всеми используемыми компонентами, например, базами данных.
  • Выбирайте Django, если вас интересует конечный продукт. Особенно, если вы работаете с простыми приложениями, такими как новостной сайт, магазин, блог, и хотите, чтобы каждая задача решалась одним предельно ясным способом.

Другими словами, Flask – это, возможно, лучший выбор для начинающего разработчика, так как он содержит меньше компонентов. Кроме того, его стоит выбрать, если необходима тонкая настройка проекта.

Flask из-за своей гибкости лучше подходит для создания REST API.

С другой стороны, если стоит задача сделать что-то просто и быстро, вероятно, стоит выбрать Django.

Data Science: машинное обучение, анализ данных и визуализация

Прежде всего, следует разобраться, что такое машинное обучение.

Предположим, что вы хотите разработать программу, которая будет автоматически определять, что изображено на картинке.

Например, предлагая ей это изображение, вы хотите, чтобы программа опознала собаку.

А здесь она должна увидеть стол.

Возможно, вы думаете, что для решения этой задачи можно просто написать код анализа изображения. Например, если на картинке много светло-коричневых пикселей, делаем вывод, что это собака.

Или вы можете научиться определять на изображении края и границы. Тогда картинка с большим количеством прямых границ, вероятно, окажется столом.

Однако это довольно сложный и непродуманный подход. Что делать, если на фотографии изображена белая собака без коричневых пятен? Или если на картинке круглый стол?

Здесь вступает в игру машинное обучение. Обычно оно реализует некоторый алгоритм, который позволяет автоматически обнаруживать знакомый шаблон среди входных данных.

Вы можете предложить алгоритму машинного обучения, скажем, 1000 изображений собаки и 1000 снимков столов. Он выучит разницу между этими объектами. Затем, когда вы дадите ему новую картинку со столом или собакой, он сможет определить, что именно на ней изображено.

Это очень похоже на то, как учатся маленькие дети. Каким именно образом они узнают, что одна вещь похожа на стол, а другая – на собаку? Из большого количества примеров.

Вы ведь не даете ребенку четкую инструкцию: "Если нечто пушистое и светло-каштановое, значит, это собака". Напротив, вы говорите: "Это собака. Это тоже собака. И это. А это стол. И это тоже стол".

Алгоритмы машинного обучения в основном работают сходным образом.

Эта технология может применяться:

  • в рекомендательных сервисах (вспомните, например, YouTube, Amazon и Netflix);
  • в системах распознавания лиц и голосов.

Среди самых популярных алгоритмов машинного обучения, о которых вы, вероятно, слышали:

Любой из вышеперечисленных алгоритмов может быть использован для решения задачи с собаками и столами на изображениях.

Способы применения Python для машинного обучения

Существуют разные библиотеки и фреймворки для машинного обучения на Python. Две самые популярные – это scikit-learn и TensorFlow.

  • scikit-learn из коробки имеет несколько встроенных популярных алгоритмов обучения;
  • TensorFlow – это более низкоуровневая библиотека. Она позволяет создавать пользовательские алгоритмы.

Новичкам в машинном обучении лучше начать со scikit-learn. Более опытным разработчикам, которые столкнулись с проблемами эффективности, стоит присмотреться к TensorFlow.

Как изучать машинное обучение?

Для ознакомления с основами предмета прекрасно подойдут курсы Стэнфорда или Калтеха (Калифорнийский технический институт). Следует отметить, что для понимания материала требуются базовые знания в области математического анализа и линейной алгебры.

Затем можно переходить к практике на платформе Kaggle. Это сайт, на котором исследователи в области data science создают различные алгоритмы машинного обучения для решения реальных проблем. Победители получают солидные денежные призы. У них также есть отличные учебники для начинающих.

Анализ и визуализация данных

Чтобы понять, о чем идет речь, следует обратиться к простому примеру.

Предположим, вы работаете аналитиком данных в компании, которая продает товары через Интернет. Вы можете получить такую гистограмму:

Из этого графика можно понять, что в это воскресенье мужчины купили более 400 единиц продукта, а женщины – около 350. Ваша задача, как аналитика, придумать несколько возможных объяснений такой разницы.

Один из очевидных вариантов заключается в том, что этот продукт больше популярен у мужчин, чем у женщин. Другое объяснение может быть связано со слишком маленьким размером выборки, который привел к недостоверным результатам. Третий вариант – мужчины по какой-либо причине склонны покупать продукт по воскресеньям.

Чтобы разобраться, в чем дело, вы можете просмотреть данные за всю неделю и составить новый график.

Из схемы видно, что различие довольно устойчиво и проявляется не только по воскресеньям.

Можно сделать вывод, что наиболее убедительным объяснением является принципиально большая заинтересованность мужчин в этом продукте.

С другой стороны, график за неделю может выглядеть вот так.

Как здесь объяснить большую разницу в продажах в воскресенье?

Вы можете предположить, что мужчины в конце недели почему-то склонны покупать больше. Или это может оказаться простым совпадением.

Это упрощенный пример того, как выглядит реальный анализ данных.

Настоящие аналитики, например, в Google или Microsoft, делают то же самое, только их работа более сложная и комплексная.

Они используют язык запросов SQL, чтобы извлекать данные из баз. Затем для анализа и визуализации применяются специальные инструменты, например, Mathplotlib (для Python) или D3.js (для JavaScript).

Способы применения Python для анализа и визуализации данных

Одна из самых популярных библиотек для визуализации – Mathplotlib.

Новичкам следует начинать обучение с нее по двум причинам:

  • низкий порог вхождения;
  • освоение Mathplotlib позволит в будущем быстрее разобраться в более сложных библиотеках, основанных на ней, например, seaborn.

Как изучать анализ данных на Python?

Сначала следует изучить основы. Вот хорошее видео, посвященное данной теме:

Закрепить знания поможет курс по визуализации данных на Pluralsight. Получить его бесплатно можно, подписавшись на 10-дневную пробную версию.

Чтобы разобраться в основах статистики, пройдите курсы на Coursera и Khan Academy.

Автоматизация процессов

Одна из самых популярных сфер применения Python – это написание небольших скриптов для автоматизации различных рабочих операций и процессов.

В качестве примера можно привести систему обработки электронной почты. Для сбора статистики и анализа данных требуется подсчитывать количество входящих писем, содержащих определенные ключевые слова. Это можно делать вручную, или же написать простой скрипт, который все посчитает сам.

Есть несколько причин применения Python для задач автоматизации:

  • простой синтаксис, позволяющий быстро писать сценарии;
  • легкость отладки, связанная с тем, что код не компилируется перед запуском.

Встроенные приложения

Python является самым популярным языком программирования для Raspberry Pi.

Python и игры

Несмотря на то, что существует библиотека PyGame, популярность применения Python для создания игр невелика. Для серьезных проектов он не подходит.

Чтобы создавать хорошие мультиплатформенные игры, стоит присмотреться к одному из самых популярных движкой Unity, работающем с языком C#.

Десктопные приложения

Вы можете создать парочку, используя Tkinter, но это не самое популярное решение.

Для этой задачи лучше использовать такие языки, как Java, C# и C++.

С недавних пор некоторые компании начали использовать для создания настольных приложений JavaScript. Например, десктопное приложение Slack было создано с помощью JavaScript-фреймворка Electron.

Преимущество написания настольных приложений на JavaScript заключается в том, что можно повторно использовать код веб-версии.

Python 3 или Python 2

Python 3 – это более современный и популярный выбор.

Пояснение о backend- и frontend-коде

Предположим, вы хотите сделать нечто, напоминающее Инстаграм.

Вам необходимо создать frontend-код для каждого типа устройств, который должен поддерживаться. Для этого могут использоваться разные языки программирования, например:

  • Swift для iOS;
  • Java для Android;
  • JavaScript для веб-браузеров.

На каждом типе устройства будет запускаться свой набор кода. Он определит формат приложения, его внешний вид и т.д.

Читайте также:  Как вырезать часть видео на айфоне

Однако вам требуется хранить личные данные и фотографии. Вы хотите использовать для этого свой сервер, а не устройства пользователей, чтобы подписчики могли просматривать фотографии друг друга.

Для решения этой задачи потребуется backend-код (server-side). Он будет выполнять следующие операции:

  • Отслеживать добавления в друзья и подписки;
  • Сжимать фотографии, чтобы они занимали меньше места при хранении;
  • Анализировать запросы и выдавать рекомендации каждому пользователю.

Какие компании используют язык в работе, сложно ли его учить и насколько востребованы программисты на Python.

Python — это скриптовый язык программирования. Он универсален, поэтому подходит для решения разнообразных задач и многих платформ, начиная с iOS и Android и заканчивая серверными ОС. Он используется в веб-разработке, создании десктопных и мобильных приложений, программировании игр, а также в аналитике и машинном обучении.

Это интерпретируемый язык — он не компилируется, то есть до запуска представляет из себя обычный текстовый файл. Программировать можно практически на всех платформах, язык хорошо спроектирован и логичен.

Разработка на нем в разы быстрее, потому что приходится писать меньше кода, чем на Java, С и других языках, — он отлично подходит новичкам.

Для чего используется Python

Python подходит для разработки любых проектов на разных платформах. Его можно встретить в вебе, на мобильных устройствах, в приложениях, решениях, связанных с машинным обучением (нейросети и искусственный интеллект), и даже в качестве встроенной системы.

Веб-разработка

Чаще всего Python используется в веб-разработке. Для работы с ним используются фреймворки: Pyramid, Pylons, TurboGears, Flask, CherryPy и — самый популярный — Django.

Существуют и движки для создания сайтов на Python:

Часто язык используют для написания парсеров, которые собирают информацию в интернете.

Программы

Хоть Python и не компилируется, его можно использовать для создания десктопных программ. Вот небольшой список того, что было разработано на Python:

  • GIMP — визуальный редактор в ОС Linux;
  • Ubuntu Software Center — центр приложений в ОС Ubuntu (один из дистрибутивов Linux);
  • BitTorrent до 6 версии (позже программу переписали на C++, но сети peer-to-peer все еще работают на Python) — менеджер торрент-закачек;
  • Blender — программа для создания 3D-графики.

Также некоторые программы частично написаны на Python, об этом читайте дальше.

Мобильные приложения

Мобильная разработка на Python менее популярна. Для устройств на Android чаще пишут на Java, C#, C++ или Kotlin, а для iOS — на Swift или Objective-C. На Python обычно программируют серверную часть приложения. Например, клиент Instagram для iOS написан на Objective-C, а сервер — на Python.

Многие компьютерные игры были полностью или частично написаны на Python. Существует заблуждение, что этот язык не подходит для серьезных проектов, но на самом деле он использовался в разработке таких хитов, как:

  • Battlefield 2;
  • World of Tanks;
  • Civilization IV;
  • EVE Online.

Несмотря на то что в Python есть возможность реализации пользовательского интерфейса и работы с графикой, чаще всего язык используют для написания скриптов — например, взаимодействия персонажей, запуска сцен, а также обработки событий.

Встроенные системы (embedded systems)

На Python часто разрабатывают встроенные системы для различных устройств. Например, его используют в Raspberry Pi (компьютер размером с карту памяти) и в «Сбербанке» для управления банкоматами.

Еще проекты со встроенной системой на Python:

  • The Owl Embedded Python System;
  • Python Embedded Tools;
  • Embedded Python.

Язык применяется во встроенных системах станков с ЧПУ, средствах автоматического регулирования (температуры, расхода жидкостей, давления и так далее) и телекоммуникационном оборудовании.

Создание скриптов

Python можно использовать для написания плагинов и скриптов к уже готовым программам. Например, для реализации игровой логики. Также он может использоваться для создания дополнительных модулей.

Часто на Python пишут скрипты, которые встраивают в программы на других языках, чтобы автоматизировать какие-либо задачи.

Где используется Python

Python широко распространен во многих сферах, от системного администрирования до Data Science.

Системное администрирование

Python часто используется системными администраторами для автоматизации задач. Он простой, мощный и поддерживает специальные пакеты, которые повышают его эффективность. И, самое главное, он по умолчанию установлен на все серверы с ОС Linux.

Благодаря лаконичности Python можно быстро прочесть код и найти слабые места. Форматирование в языке — часть синтаксиса.

Научные исследования

В Python есть несколько библиотек, которые можно использовать для проведения исследований и вычислений:

  • SciPy — библиотека с научными инструментами;
  • NumPy — расширение, которое добавляет поддержку матриц и многомерных массивов, а также математические функции для работы с ними;
  • Matplotlib — библиотека для работы с 2D- и 3D-графикой.

Благодаря библиотекам и простоте освоения языка многие ученые выбирают Python — особенно он популярен у математиков и физиков.

Data Science

Python — один из самых используемых в Data Science языков. На нем пишут алгоритмы программ с машинным обучением и аналитические приложения. С помощью него обслуживают хранилища данных и облачные сервисы.

Также с его помощью можно парсить (scrapping) данные из интернета. Например, в Google Python применяют для индексации сайтов.

Какие компании используют Python

В основном Python используется стартапами и компаниями, которые разрабатывают крупные проекты. Вот лишь часть огромного списка:

  • Alphabet использует язык для скраппинга в поисковике Google и реализации сервиса YouTube;
  • One Laptop Per Child — для разработки интерфейса и модели функционирования;
  • BitTorrent — для реализации сетей peer-to-peer;
  • Агентство национальной безопасности США — для шифрования и анализа разведданных;
  • ESRI — как инструмент настройки геоинформационных программ;
  • Maya — для создания мультипликации;
  • Pixar, Industrial Light & Magic — для создания анимационных фильмов;
  • Intel, Cisco, HP, Seagate, Qualcomm и IBM — для тестирования;
  • JPMorgan Chase, UBS, Getco и Citadel — для прогнозирования финансового рынка;
  • NASA, Los Alamos, Fermilab, JPL — для научных вычислений;
  • iRobot — для разработки коммерческих роботизированных устройств;
  • IronPort — для реализации почтового сервера.

Кроме того, его используют в Instagram, Positive Technologies, Houdini, Facebook, Yahoo, Red Hat, Dropbox, Pinterest, Quora, Mail.ru и «Яндексе».

Недостатки языка Python

Несмотря на все достоинства, у языка есть и недостатки. Программы на нем считаются одними из самых медленных. Для сравнения: приложения для iOS на Swift работают в 8,7 раз быстрее, чем приложения на Python.

У Python существует реализация PyPy, которая по скорости близка к Java, но в ней есть не все возможности оригинального языка. Python не подходит для задач, требующих большого объема памяти, — их лучше решать вставками на C или C++.

Другим недостатком является сильная зависимость языка от системных библиотек, из-за чего затрудняется перенос на другие системы. Для этих целей существует инструмент Virtualenv, но и он с недостатками: избыточность полных методов изоляции, костыли, дублирование системных библиотек.

Еще одна проблема — в том, что Global Interpreter Lock (GIL) не позволяет выполнять несколько потоков Python одновременно в реализации CPython. Однако GIL можно отключить на какое-то время, как это сделано в математическом пакете NumPy.

Трудоустройство и средняя зарплата Python-разработчика

По данным с hh.ru на начало 2019 года, в России

4500 вакансий для Python-разработчиков, из них

2000 в Москве и

700 в Санкт-Петербурге. Это меньше, чем по запросу «Java» (

5500), но больше, чем по запросу «PHP» (

3600), — можно заметить тенденцию, что Python медленно забирает позиции PHP с рынка веб-разработки. Хотя на PHP все еще написано около 80% всех сайтов в интернете.

Минимальная зарплата по России начинается с 70 000 рублей, а в Москве — с 80 000 рублей. В основном ищут опытных разработчиков, junior-специалисты менее востребованы.

На должность стажера или младшего специалиста можно устроиться только в крупную компанию, а расположены они в больших городах типа Москвы и Санкт-Петербурга. Из-за этого новичкам крайне сложно устроиться в регионах — остается искать заказы на фрилансе.

Если вас заинтересовал Python, пройдите курс от Skillbox — на нем вы не только получите необходимые знания и навыки, но и сможете составить привлекательное резюме и добавить дипломную работу в портфолио.

Ссылка на основную публикацию
Adblock detector