Числа оканчиваются четную цифру

Числа оканчиваются четную цифру

Признаки делимости чисел– это правила, позволяющие не производя деления сравнительно быстро выяснить, делится ли это число на заданное без остатка.
Некоторые из признаков делимости довольно просты, некоторые сложнее. На этой странице Вы найдете как признаки делимости простых чисел, таких как, например, 2, 3, 5, 7, 11, так и признаки делимости составных чисел, таких, как 6 или 12.
Надеюсь, данная информация будет Вам полезной.
Приятного обучения!

Это один из самых простых признаков делимости. Звучит он так: если запись натурального числа оканчивается чётной цифрой, то оно чётно (делится без остатка на 2), а если запись числа оканчивается нечётной цифрой, то это число нечётно.
Другими словами, если последняя цифра числа равна 2, 4, 6, 8 или — число делится на 2, если нет, то не делится
Например, числа: 234, 827, 1276, 9038, 502 делятся на 2, потому что они чётные.
А числа: 235, 137, 2303
на 2 не делятся, потому что они нечетные.

У этого признака делимости совсем другие правила: если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.
А значит, чтобы понять, делится ли число на 3, надо лишь сложить между собой цифры, из которых оно состоит.
Выглядит это так: 3987 и 141 делятся на 3, потому что в первом случае 3+9+8+7=27 (27:3=9 — делится без остака на 3), а во втором 1+4+1=6 (6:3=2 — тоже делится без остака на 3).
А вот числа: 235 и 566 на 3 не делятся, потому как 2+3+5=10 и 5+6+6=17 (а мы знаем, что ни 10 ни 17 не делятся на 3 без остатка).

Этот признак делимости будет посложнее. Если последние 2 цифры числа образуют число, делящееся на 4 или это 00, то и число делится на 4, в противном случае данное число не делится на 4 без остатка.
Например: 100 и 364 делятся на 4, потому что в первом случае число оканчивается на 00, а во втором на 64, которое в свою очередь делится на 4 без остатка (64:4=16)
Числа 357 и 886 не делятся на 4, потому что ни 57 ни 86 на 4 не делятся, а значит не соответствуют данному признаку делимости.

И опять перед нами довольно простой признак делимости: если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
Это значит, что любые числа, оканчивающиеся цифрами и 5, например 12355 и 43, подпадают под правило и делятся на 5.
А, к примеру, 15493 и 564 не оканчиваются на цифру 5 или 0, а значит они не могут делиться на 5 без остатка.

Перед нами составное число 6, которое является произведением чисел 2 и 3. Поэтому признак делимости на 6 тоже является составным: для того, чтобы число делилось на 6, оно должно соответствовать двум признакам делимости одновременно: признаку делимости на 2 и признаку делимости на 3. При этом обратите внимание, что такое составное число как 4 имеет индивидуальный признак делимости, ведь оно является призведением числа 2 на само себя. Но вернемся к признаку делимости на 6.
Числа 138 и 474 чётные и отвечают признакам делимости на 3 (1+3+8=12, 12:3=4 и 4+7+4=15, 15:3=5), а значит они делятся на 6. Зато 123 и 447 хоть и делятся на 3 (1+2+3=6, 6:3=2 и 4+4+7=15, 15:3=5), но они нечётные, а значит не соответсвуют признаку делимости на 2, а следовательно и не соответсвуют признаку делимости на 6.

Читайте также:  Самодельный кронштейн для телевизора на стену

Этот признак делимости более сложный: число делится на 7, если результат вычитания удвоенной последней цифры из числа десятков этого числа делится на 7 или равен 0.
Звучит довольно запутанно, но на практике просто. Смотрите сами: число 959 делится на 7, потому что 95-2*9=95-18=77, 77:7=11 (77 делится на 7 без остатка). Причем если с полученным во время преобразований числом возникли сложности (из-за его размера сложно понять, делится оно на 7 или нет, то данную процедуру можно продолжать столько раз, сколько Вы сочтете нужным).
Например, 455 и 45801 обладают признаками делимости на 7. В первом случае все довольно просто: 45-2*5=45-10=35, 35:7=5. Во втором случае мы поступим так: 4580-2*1=4580-2=4578. Нам сложно понять, делится ли 4578 на 7, поэтому повторим процесс: 457-2*8=457-16=441. И опять воспользуемся признаком делимости, так как перед нами пока еще трехзначное число 441. Итак, 44-2*1=44-2=42, 42:7=6, т.е. 42 делится на 7 без остатка, а значит и 45801 делится на 7.
А вот числа 111 и 345 не делятся на 7, потому что 11-2*1=11-2=9 (9 не делится без остатка на 7) и 34-2*5=34-10=24 (24 не делится без остатка на 7).

Признак делимости на 8 звучит так: если последние 3 цифры образуют число, делящееся на 8, или это 000, то заданное число делится на 8.
Числа 1000 или 1088 делятся на 8: первое оканчивается на 000, у второго 88:8=11 (делится на 8 без остатка).
А вот числа 1100 или 4757 не делятся на 8,так как числа 100 и 757 не делятся без остатка на 8.

Этот признак делимости схож с признаком делимости на 3: если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
Например: 3987 и 144 делятся на 9, потому что в первом случае 3+9+8+7=27 (27:9=3 — делится без остака на 9), а во втором 1+4+4=9 (9:9=1 — тоже делится без остака на 9).
А вот числа: 235 и 141 на 9 не делятся, потому как 2+3+5=10 и 1+4+1=6 (а мы знаем, что ни 10 ни 6 не делятся на 9 без остатка).

Данные признаки делимости я объединил потому, что их можно описать одинаково: число делится на разрядную единицу, если количество нулей на конце числа больше или равно количеству нулей у заданной разрядной единицы.
Другими словами, например, мы имеем такие числа: 654, 46400, 867000, 645. из них все делятся на 1; 46400 и 867000 делятся еще и на 100; и лишь одно из них — 867000 делится на 1000.
Любые числа, у которых количество нулей на конце меньше чем у разрядной единицы, не делятся на эту разрядную единицу, например 60030 и 793 не делятся 100.

Для того, чтобы выяснить, делится ли число на 11, надо получить разность сумм четных и нечетных цифр этого числа. Если данная разность равна 0 или делится на 11 без остатка, то и само число делится на 11 без остатка.
Чтобы было понятнее, предлагаю рассмотреть примеры: 2354 делится на 11, потому что (2+5)-(3+4)=7-7=0. 29194 тоже делится на 11, так как (9+9)-(2+1+4)=18-7=11.
А вот 111 или 4354 не делятся на 11, так как в первом случае у нас получается (1+1)-1=1, а во втором (4+5)-(3+4)=9-7=2.

Число 12 является составным. Его признаком делимости является соответствие признакам делимости на 3 и на 4 одновременно.
Например 300 и 636 соответствуют и признакам делимости на 4 (последние 2 цифры это нули или делятся на 4) и признакам делимости на 3 (сумма цифр и первого и втророго числа делятся на 3), а занчит, они делятся на 12 без остатка.
А вот 200 или 630 не делятся на 12, потому что в первом случае число отвечает лишь признаку делимости на 4, а во втором — лишь признаку делимости на 3. но не обоим признакам одновременно.

Читайте также:  Что делать если в наушниках пропадает звук

Признаком делимости на 13 является то, что если число десятков числа, сложенное с умноженными на 4 единицами этого числа, будет кратно 13 или равно 0, то и само число делится на 13.
Возьмем для примера 702. Итак, 70+4*2=78, 78:13=6 (78 делится без остатка на 13), значит и 702 делится на 13 без остатка. Еще пример — число 1144. 114+4*4=130, 130:13=10. Число 130 делится на 13 без остатка, а значит заданное число соответсвует признаку делимости на 13.
Если же взять числа 125 или 212, то получаем 12+4*5=32 и 21+4*2=29 соответсвенно, и ни 32 ни 29 не делятся на 13 без остатка, а значит и заданные числа не делятся без остатка на 13.

Как видно из вышеперечисленного, можно предположить, что к любому из натуральных чисел можно подобрать свой индивидуальный признак делимости или же "составной" признак, если число кратно нескольким разным числам. Но как показывает практика, в основном чем больше число, тем сложнее его признак. Возможно, время ,потраченное на проверку признака делимости, может оказаться равно или больше чем само деление. Поэтому мы и используем обычно простейшие из признаков делимости.

Умные дети – счастливые родители

Какой остаток может получиться при делении на 2?

Ответы к с. 66

212. Какое число получится: чётное или нечётное, если нечётное число делить на нечётное число, при условии, что выполнено деление нацело? Приведи три примера, подтверждающих твоё предположение.

При делении нечётного числа на нечётное число результат всегда будет нечётным числом.
45 : 5 = 9 55 : 11 = 5 63 : 7 = 9

213. Какое число получится: чётное или нечётное, если чётное число делить на нечётное число, при условии, что выполнено деление нацело? Приведи несколько примеров, подтверждающих твоё предположение. Обсуди результат с соседом по парте.

При делении чётного числа на нечётное число результат всегда будет чётным числом.
54 : 9 = 6 50 : 5 = 10 96 : 3 = 32

214. Можешь ли ты привести пример такого случая деления, когда нечётное число делится нацело на чётное число? Почему? Вспомни, как можно получить делимое из делителя и значения частного.

Делимое можно получить, умножив делитель на значение частного. По условию делитель является чётным числом. Мы знаем, что если чётное число умножить на чётное или нечётное число, то результатом будет всегда чётное число. В нашем же случае делимое должно быть нечётным числом. Это означает, что никакое значение частного в этом случае подобрать нельзя и привести пример такого случая деления невозможно.

215. Представь число 2873 в виде суммы круглых десятков и однозначного числа. Чётным или нечётным числом является каждое из слагаемых? Чётным или нечётным числом будет значение их суммы? На какую цифру может оканчиваться запись чётного числа? А нечётного?

2873 = 2870 + 3
Первое слагаемое – чётное число, второе слагаемое – нечётное число.
2873 – нечётное число.
Нечётное число 2873 заканчивается на нечётную цифру 3, запись чётного числа 2870 – на чётную цифру 0.
Запись чётного числа может оканчиваться чётными цифрами (0, 2, 4, 6, 8), а запись нечётного числа – нечётными числами (1, 3, 5, 7, 9).

Читайте также:  Как проверять автомобиль при покупке в автосалоне

216. Выпиши чётные числа в один столбик, а нечётные – в другой.

2844 57893
67586 9231
10050 9929

217. Сколько существует чётных двузначных натуральных чисел? А сколько таких же нечётных чисел?

Самое маленькое двузначное чётное число 10, а самое большое – нечётное число 99. Всего их 99 – 10 + 1 = 90. Чётные и нечётные числа в натуральном ряду чередуются, поэтому чётных двузначных чисел столько же сколько и нечётных, то есть 45, поскольку 90 : 2 = 45.

218. Запиши самое большле чётное шестизначное число.

Самое большое шестизначное число – 999999. Это число нечётное. Предшествующее число – 999998 – число чётное. Оно самое большое в ряду шестизначных чисел.

Признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10 без остатка. + Признаки делимости на 11,13,25,36.

  • Признак делимости на 2:если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если нечетной цифрой, то число без остатка не делится на 2. Короче говоря, четное число делится на 2, нечетное не делится на 2.
  • Признак делимости на 3: если сумма цифр числа делится на 3, то и число делится на 3. Если сумма цифр не делится на 3, то и число не делится на 3. Примеры: а)276 делится на 3, так как 2 + 7 + 6 = 15, а 15 делится на 3; б)563 не делится на 3, так как 5 + 6 + 3 = 14, а 14 не делится на 3.
  • Признак делимости на 4: число делится на 4, если оканчивается на 00, или число, составленное из двух последних цифр данного числа, делится на 4. Примеры: а)78 536 делится на 4, так как 36 делится на 4; б)8422 не делится на 4, так как 22 не делится на 4.
  • Признак делимости на 5: если запись натурального числа оканчивается цифрами 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.а)370 и 1485 делятся без остатка на 5; б)числа 537 и 4008 без остатка на 5 не делятся.
  • Признак делимости на 6: число делится на 6, если оно делится одновременно на 2 и на 3. В противном случае оно на 6 не делится. Примеры: а)2862 делится на 6, так как 2862 делится и на 2, и на 3; б)3754 не делится на 6, так как 3754 не делится на 3
  • Признак делимости на 8: число делится на 8, если оканчивается на 000, или число, составленное из трех последних цифр данного числа, делится на 4. Примеры: а)78 000 делится на 0, так как оканчивается на 000; б)8422 не делится на 8, так как 422 не делится на 8.
  • Признак делимости на 9: если сумма цифр числа делится на 9, то и само число делится на 9. Если сумма цифр числа не делится на 9, то и число не делится на 9. Примеры: а)5787 делится на 9, так как 5 + 7 + 8 + 7= 27, а 27 делится на 9; б)359 не делится на 9, так как 3 + 5 + 9 = 17, а 17 не делится на 9.
  • Признак делимости на 10: если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10. Примеры: а)680 делится на 10; б)104 не делится на 10 без остатка.
Ссылка на основную публикацию
Adblock detector