Чем отличается естественный свет от плоскополяризованного

Чем отличается естественный свет от плоскополяризованного

Естественный свет – свет, при котором колебания векторов происходит во всех плоскостях, проходящих через направление луча. Электромагнитные колебания являются гармоническими и характеризуются длиной волны, амплитудой, фазой, частотой. Видимый свет состоит из волн, имеющих длину в интервале от 380 – 760 mμ. Волна определенной длины имеет свой цвет, а в сумме видимые волны дают белый цвет. Спектр видимого света состоит из следующих цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового.

Поляризованный (плоскополяризованный) свет- свет, при котором колебания векторов происходят только в одной определенной плоскости. Явление поляризации света кристаллами было открыто при прохождении света через прозрачный кристалл исландского шпата. Плоскополяризованный свет возникает при отражении от гладкой поверхности (частичная поляризация), либо проходя через кристалл. В качестве поляризаторов применяют кристаллы исландского шпата (призма Николя) или искусственно созданные поляроиды.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9908 — | 7691 — или читать все.

§1 Естественный и поляризованный свет

Испускание кванта света происходит в результате перехода электрона из возбужденного состояния в основное. Электромагнитная волна, испускаемая в результате этого перехода, является поперечной, то есть вектора и взаимно перпендикулярны и перпендикулярны направлению распространения. Колебания вектора происходят в одной плоскости. Свет, в котором вектор колеблется только в одном направлении, называется плоско поляризованным светом (или электромагнитной волной). Поляризованным называется свет, в котором направления колебания вектора упорядочены каким-либо образом.

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы излучают световые волна независимо друг от друга, поэтому световая волна, излучаемая телом в целом, харак­теризуется всевозможными равновероятными колебаниями светового вектора . Свет со всевозможными равновероятными ориентациями вектора называется естественным. Свет, в котором имеется преимущественное направление колебаний вектора и незначительная амплитуда колебаний вектора в других направлениях, называется частично поляризованным. В плоско поляризованном свете плоскость, в которой колеблется вектор , называется плоскостью поляризации, плоскость, в которой колеблется вектор , называется плоскостью колебаний.

Вектор называют световым вектором потому, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества.

Различает также эллиптически поляризованный свет: при распростра­нении электрически поляризованного света вектор описывает эллипс, и циркулярно поляризованный свет (частный случай эллиптически поляризованного света) — вектор описывает окружность (сравните со сложением взаимно перпендикулярных колебаний: возможны: прямая линия, эллипс и окружность).

Степенью поляризации называется величина

где Imax и Imin – максимальная и минимальная компоненты интенсивности света, соответствующие двум взаимно перпендикулярным компонентам вектора (то есть Ех и Еу – составляющие). Для плоско поляризованного света Еу = Е, Ех = 0, следовательно, Р = 1. Для естественного света Еу = Ех = Е и Р = 0. Для частично поляризованного света Еу = Е, Ех = (0. 1)Еу, следовательно, 0

Если вектор в эллиптически поляризованном свете вращается при распространении света по часовой стрелке, то поляризация называется правой, против — левой. В эллиптически поляризованном свете колебания полностью упорядочены. К эллиптически поляризованному свету понятие степени поляризации не применимо, так что Р=1 всегда.

§2 Анализ поляризованного света при отражении и преломлении.

Закон Брюстера. Закон Малюса

Наиболее просто поляризационный свет можно получить из естественного света при отражении световой волны от границы раздела двух диэлектриков.

Если естественный свет падает на границу раздела двух диэлек­триков (например, воздух-стекло), то часть его отражается, а часть преломляется и распространяется во второй среде.

При угле падения, равном углу Брюстера іБр: 1. отраженный от границы раздела двух диэлектриков луч будет полностью поляризован в плоскости, перпендикулярной плоскости падения; 2. степень поляризации преломленного луча достигает максимального значения меньшего единицы; 3. преломленный луч будет поляризован частично в плоскости падения; 4. угол между отраженным и преломленным лучами будет равен 90°; 4. тангенс угла Брюстера равен относительному показателю преломления

n 12 — показатель преломления второй среды относительно первой. Угол падения (отражения) — угол между падающим (отраженным) лучом и нормалью к поверхности. Плоскость падения — плоскость, проходящая через падающий луч и нормаль к поверхности.

Степень поляризации преломленного света может быть значительно повышена многократным преломлением при условии падения света на границу раздела под углом Брюстера. Если для стекла ( n = 1,53) степень поляризации преломленного луча составляет ≈15 %, то после преломления на 8-10 наложенных друг на друга стеклянных пластинках, вышедший свет будет практически полностью поляризован — стопа Столетова.

Читайте также:  Составить кроссворд из предложенных слов

Поляризованный свет можно получить из естественного с помощью поляризаторов — анизотропных кристаллов, пропускающих свет только в одном направлении (исландский шпат, кварц, турмалин).

Поляризатор, анализирующий в какой плоскости поляризован свет, называется анализатором.

Если на анализатор падает плоско поляризованный свет амплитудой Е и интенсивности I ( ), плоскость поляризации которого составляет угол φ с плоскостью анализатора, то падающее электромагнитное колебание можно разложить на два колебания; с амплитудами и , параллельное и перпендикулярное плоскости анализатора.

Сквозь анализатор пройдет составляющая параллельная плоскости анализатора, то есть составляющая , а перпендикулярная составлявшая будет задержана анализатором. Тогда интенсивность прошедшего через анализатор света будет равна ( ):

закон Малюса

Закон Малюса : Интенсивность света, прошедшего через поляризатор, прямо пропорциональна произведению интенсивности падающего плоско поляризованного света I и квадрату косинуса угла между плоскостью падающего света и плоскостью поляризатора.

Если на поляризатор падает естественный свет, то интенсивность вышедшего из поляризатора света I равна половине I ест , и тогда из анализатора выйдет

§ 3 Двойное лучепреломление

Все кристаллы, кроме кристаллов кубической система — изотропных кристаллов, являются анизотропными, то есть свойства кристаллов зависят от направления. Явление двойного лучепреломления впервые было обнаружено Барталином в 1667 г. на кристалле исландского шпата (разновидность СаСО3). Явление двойного лучепреломления заклю­чается в следующем: луч света, падающий на анизотропный кристалл, разделяется в нем на два луча: обыкновенный и необыкновенный, распространяющиеся с разными скоростями в различных направлениях.

Анизотропные кристаллы подразделяются на одноосные и двуосные.

У одноосных кристаллов имеются одно направление, называемое оптической осью, при распространении вдоль которого не происходит разделения на обыкновенный и необыкновенный лучи. Любая прямая параллельная направлению оптической оси будет также являться оптической осью. Любая плоскость, проходящая через оптическую ось и падающий луч, называется главным сечением или главной плоскостью кристаллам.

Отличия между обыкновенными и необыкновенными лучами:

  1. обыкновенный луч подчиняется законам преломления необыкновенный — нет;
  2. обыкновенный луч поляризован перпендикулярно главной плоскости, плоскость поляризации необыкновенного луча перпендикулярна плоскости поляризованного обыкновенного луча;
  3. кроме оптической оси обыкновенные и необыкновенные лучи распространяются в разных направлениях. Показатель преломления n обыкновенного луча постоянен во всех направлениях, следовательно, фазовая скорость обыкновенного луча постоянна во всех направлениях. Показатель преломления nе необыкновенного луча ( Uф.е. ) зависит от направления.

Различие скоростей U о и U е для всех направлений, кроме направ­ления оптической оси, обуславливает явление двойного лучепреломления в одноосных кристаллах. У двуосных кристаллов имеется два направления, вдоль которых не происходит двойного лучепреломления.

Понятие обыкновенного и необыкновенного лучей имеет место пока эти лучи распространяются в кристалле, при выходе из кристалла эти понятия теряют смысл, то есть лучи отличаются только плоскостями поляризаций.


Природа двулучепреломления связана с тем, что обыкновенные и необыкновенные лучи имеют разные скорости, а так как , то для обыкновенного и необыкновенного лучей будут разные показатели преломления n и n е , а так как то можно сказать, что перво­причиной двойного лучепреломления является анизотропия диэлектрич­еской проницаемости кристалла. Кристаллы, у которых V е V ( n е > n ) называются положительными, а у которых V е > V ( n е n )называются отрицательными.

1. Свет естественный и поляризованный.

2. Прохождение света через поляризатор. Закон Малюса.

3. Способы получения поляризованного света.

4. Вращение плоскости поляризации оптически активными веществами.

5. Применение поляризованного света для решения медико-биологических задач. Поляриметрия. Фотоупругость.

6. Основные понятия и формулы.

22.1. Свет естественный и поляризованный

Разбирая явление интерференции света, мы выяснили, что естественный свет представляет собой совокупность огромного числа цугов, испущенных различными молекулами (атомами) в различные моменты времени. В луче естественного света все направления колебаний светового вектора, перпендикулярные направлению распространения пучка, равновероятны.

Естественный свет — совокупность электромагнитных волн (цугов) со всевозможными равновероятными направлениями световых векторов (Е), перпендикулярных направлению распространения света.

Ниже показано графическое изображение луча естественного света.

На рисунке 22.1, а показано сечение луча О плоскостью, перпендикулярной его направлению, и хаотическая ориентация световых векторов различных цугов в этом сечении. Такое сечение называют нормальным сечением. На рисунке 22.1, б показано сечение луча О плоскостью, проходящей через сам луч. Такое сечение называют осевым. Световые векторы цугов, лежащие в осевом сечении, изображены черточками, а световые векторы цугов, перпендикулярные сечению, изображены точками. Количество точек и черточек одинаково.

Рис. 22.1. Сечение луча естественного света двумя плоскостями: а — нормальное сечение; б — осевое сечение

Читайте также:  Работа с текстовыми файлами паскаль

Из естественного света с помощью специальных устройств — поляризаторов — можно получить свет с одинаковой ориентацией всех световых векторов. Такой свет называют плоскополяризованным.

Плоскополяризованный свет — свет, в луче которого ориентация световых векторов всех цугов одинакова.

Осевое сечение луча плоскополяризованного света, в котором лежат все световые векторы, называют плоскостью поляризации.

Ниже показано графическое изображение луча плоскополяризованного света.

На рисунке 22.2, а показано нормальное сечение луча О — все световые векторы колеблются вдоль одной прямой. На рисунке 22.2, б показано осевое сечение, в котором лежат все световые векторы (изображены черточками), — это плоскость поляризации. На рисунке 22.2, в показано осевое сечение луча, перпендикулярное световым векторам (изображены точками).

Свет, в котором имеется преимущественное направление колебаний светового вектора Е, называют частично поляризованным светом. Такой свет представляет собой смесь естественного и плоскополяризованного света.

На рисунке 22.3 представлено графическое изображение луча частично поляризованного света.

Рис. 22.2. Сечение луча плоскополяризованного света различными плоскостями:

а — нормальное сечение; б — осевое сечение, содержащее световые векторы (плоскость поляризации); в — осевое сечение, перпендикулярное световым векторам

Рис. 22.3. Сечения луча частично поляризованного света: а — нормальное сечение; б — осевое сечение, в котором преобладают световые векторы, лежащие в его плоскости; в — осевое сечение, в котором преобладают световые векторы, перпендикулярные его плоскости

22.2. Прохождение света через поляризатор. Закон Малюса

Процесс превращения естественного света в поляризованный (поляризация) может быть осуществлен посредством специальных устройств — поляризаторов.

Поляризатор — устройство для получения полностью или (реже) частично поляризованного света.

Мы будем рассматривать только полную линейную поляризацию, при которой из поляризатора выходит плоскополяризованный свет.

Поляризатор пропускает только проекцию светового вектора Е на некоторую плоскость, которую называют главной плоскостью

поляризатора. Эта плоскость проходит через точку падения луча, а ее пространственная ориентация определяется устройством поляризатора.

Обнаружить наличие поляризации света и определить ее степень можно с помощью анализатора. Анализатор — это поляризатор, используемый для определения степени поляризации.

Если на пути луча поляризованного света поставить анализатор и поворачивать его вокруг луча, то интенсивность выходящего света будет меняться от некоторого максимального значения I до нуля. Измеряя интенсивность света, прошедшего через анализатор, Э.Л. Малюс установил (1810 г.), что она подчиняется следующему закону (закон Малюса):

Здесь I — интенсивность света, падающего на анализатор; I — интенсивность прошедшего света; φ — угол между главными плоскостями поляризатора и анализатора.

С математической точки зрения закон Малюса означает, что поляризатор пропускает только проекцию светового вектора Е на главную плоскость поляризатора (рис. 22.4).

Рис. 22.4. Прохождение поляризованного света через анализатор (луч перпендикулярен плоскости рисунка)

Если на поляризатор падает естественный (неполяризованный) свет, то закон Малюса применим к каждому отдельному цугу. В естественном свете все направления световых векторов равновероятны.

22.3. Способы получения поляризованного света

Действие большинства линейных поляризаторов, дающих плоскополяризованный свет, основывается на одном из трех физических явлений: двойном лучепреломлении, линейном дихроизме и поляризации света при отражении и преломлении.

Поляризация при отражении и преломлении

При падении светового луча на границу раздела двух изотропных диэлектриков (например, воздуха и стекла) он частично отражается, а частично проникает во вторую среду. При этом оба луча оказываются частично поляризованными. В отраженном луче преобладают направления вектора Е, перпендикулярные плоскости падения, а в преломленном — параллельные ей. Степень поляризации зависит от угла падения. При некотором угле падения отраженный луч будет поляризован полностью, а степень поляризации преломленного луча будет максимальна (рис. 22.5).

Рис. 22.5. Поляризация света при отражении и преломлении

Этот угол называется углом Брюстера (iБ) и определяется условием:

Степень поляризации преломленного луча может быть значительно повышена путем многократного преломления. Так, при прохождении одной стеклянной пластинки степень поляризации преломленного луча не превышает 15 %. Но после прохождения стопы из 16 наложенных друг на друга пластин вышедший свет будет поляризован практически полностью.

Такая совокупность пластинок называется стопой Столетова. К недостаткам этого метода следует отнести низкую интенсивность полученного поляризованного света.

Поляризация при двойном лучепреломлении

При преломлении светового луча на границе раздела с некоторыми анизотропными средами наблюдается явление двойного лучепреломления — преломленный луч раздваивается. При этом оба луча оказываются полностью поляризованы.

Оптической анизотропией обладают многие кристаллы из-за асимметрии их решеток (например, исландский шпат).

Читайте также:  Как поменять язык в телефоне htc

Двойное лучепреломление — раздвоение светового луча при прохождении через некоторые анизотропные среды, обусловленное зависимостью показателя преломления света от его поляризации и направления распространения.

Один луч подчиняется законам преломления и называется обыкновенным «о». Для другого луча эти законы не выполняются, и его называют необыкновенным «е». Явление двойного лучепреломления иллюстрирует рис. 22.6.

Поскольку при двойном лучепреломлении задача получения полностью поляризованного

Рис. 22.6. Двойное лучепреломление

света решается автоматически, остается лишь из двух лучей выделить один. Для этого используют два способа.

1. Призма Николя. Этот поляризатор (рис. 22.7) изготавливается из исландского шпата, для которого показатели преломления обыкновенного и необыкновенного лучей различны: n = 1,65, nе = 1,48. Призма разрезана по диагонали и склеена канадским бальзамом с «промежуточным» показателем преломления nкб = 1,55.

Рис. 22.7. Ход лучей в призме Николя

При соответствующих углах падения на грань призмы обыкновенный луч «о» претерпевает полное внутреннее отражение на прослойке канадского бальзама и поглощается зачерненной верхней гранью. Необыкновенный луч «е» проходит через границу и выходит из призмы параллельно нижней грани.

2. Дихроизм, поляроиды. В некоторых кристаллах с двойным лучепреломлением обыкновенный луч «о» поглощается значительно сильнее, чем необыкновенный «е». Такое явление называется дихроизмом. Дихроизмом в диапазоне видимого света обладает, например, турмалин. В пластине турмалина толщиной 1 мм при падающем видимом свете луч «о» практически целиком поглощается. Выходит только луч «е».

Поляризаторы, использующие дихроизм, называются поляроидами. В настоящее время научились изготавливать поляроиды в виде тонких пленок с большой площадью, что дает возможность получать широкие пучки поляризованного света. Подобные пленки широко применяются в дисплеях калькуляторов и в жидкокристаллических экранах мониторов компьютеров. Поляроидные очки ослабляют солнечные блики на воде или снегу. Для этих же целей при видеосъемке используют поляризационные фильтры.

22.4. Вращение плоскости поляризации оптически активными веществами

Прохождение поляризованного света через некоторые анизотропные среды сопровождается поворотом плоскости его поляризации вокруг направления распространения света. Это явление называется вращением плоскости поляризации. Вещества, в которых наблюдается это явление, называют оптически активными. Примерами твердых оптически активных веществ являются твердые вещества кварц, сахар, киноварь.

Угол поворота плоскости поляризации (а) пропорционален толщине слоя оптически активного вещества (L):

Коэффициент пропорциональности α зависит от структуры вещества и называется постоянной вращения (град/мм). Вращательная способность очень сильно зависит от частоты света. Например, кварцевая пластинка толщиной 1 мм поворачивает плоскость поляризации красного света на 15°, а плоскость поляризации фиолетового света — на 51°.

Способностью поворачивать плоскость поляризации обладают также растворы некоторых веществ. Например, водный раствор сахара и глюкозы, скипидар, винная кислота, никотин. Для них угол поворота зависит еще и от концентрации (С):

Здесь [α] — удельное вращение (градхсм 2 /г), величина которого зависит от химической природы растворенного вещества и растворителя, от температуры и длины волны света ([α]

Оптически активные вещества делятся на две группы. В первой из них оптическая активность связана с асимметричным строением молекулы, не имеющей ни центра, ни плоскостей симметрии, т.е. хиральной. В этом случае оптическая активность вещества проявляется во всех агрегатных состояниях и растворах. Ко второй группе относятся вещества, оптическая активность которых связана с асимметричной структурой самого вещества (кристаллической решетки).

Оптически активные вещества могут быть правовращающими и левовращающими. Правовращающее вещество поворачивает плоскость поляризации по часовой стрелке (если смотреть навстречу лучу).

Величина вращательной способности для него положительна (α > 0). Левовращающее вещество поворачивает плоскость поляризации против часовой стрелки. Величина вращательной способности для него отрицательна (α 3 .

3. Определить толщину L кварцевой пластинки, для которой угол поворота плоскости поляризации света с длиной волны λ = 509 нм равен α = 180°. Постоянная вращения в кварце для этой длины волны α = 29,7 град/мм.

4. Раствор сахара, налитый в трубку длиной L = 20 см, поворачивает плоскость поляризации света (λ = 0,5 мкм) на угол а = 30°. Найти концентрацию сахара в растворе, если удельное вращение, вызываемое раствором сахара для этой длины волны [α] = 6,67 град*см 2 /г.

5. Раствор глюкозы с концентрацией С1 = 0,28 г/см 3 , налитый в кювету сахариметра, поворачивает плоскость поляризации света на угол а1 = 32°. Определить концентрацию С2 глюкозы в кювете той же длины, если раствор вращает плоскость поляризации на угол

6. При какой высоте солнца над горизонтом солнечный свет отражается от поверхности озера плоскополяризованным? Показатель преломления воды в области видимого света n = 1,33.

Ссылка на основную публикацию
Adblock detector